工程数学作业(一)答案(满分100分)
第2章 矩阵
(一)单项选择题(每小题2分,共20分)
a1 ⒈设b1a2b2a3a1b3?2,则2a1?3b1a22a2?3b2a3. 2a3?3b3?(D )
c1c2c3c1c2c3 A. 4 B. -4 C. 6 D. -6
0001 ⒉若
00a00200?1,则a?(A ). 100a A.
12 B. -1 C. ?12 D. 1 ⒊乘积矩阵?13??1??24???10????521?中元素c?23?(C ). A. 1 B. 7 C. 10 D. 8
⒋设A,B均为n阶可逆矩阵,则下列运算关系正确的是( B). A. A?B?1?A?1?B?1 B. (AB)?1?BA?1
C. (A?B)?1?A?1?B?1 D. (AB)?1?A?1B?1
⒌设A,B均为n阶方阵,k?0且k?1,则下列等式正确的是(D A. A?B?A?B B. AB?nAB C. kA?kA D. ?kA?(?k)nA ⒍下列结论正确的是( A).
A. 若A是正交矩阵,则A?1也是正交矩阵
B. 若A,B均为n阶对称矩阵,则AB也是对称矩阵 C. 若A,B均为n阶非零矩阵,则AB也是非零矩阵 D. 若A,B均为n阶非零矩阵,则AB?0
⒎矩阵3??1?. ?25?的伴随矩阵为( C)
? A. ??1?3???13??25?? B. ???2?5?? word文档 可自由复制编辑
).
?5?3? C. ?? D.
?21????53??2?1? ?? ⒏方阵A可逆的充分必要条件是(B ).
A.A?0 B.A?0 C. A*?0 D. A*?0 ⒐设A,B,C均为n阶可逆矩阵,则(ACB?)?1?(D ). A. (B?)?1A?1C?1 B. B?CA C. A?1C?1(B?1)? D. (B?1)?C?1A?1
⒑设A,B,C均为n阶可逆矩阵,则下列等式成立的是(A ). A. (A?B)2?A2?2AB?B2 B. (A?B)B?BA?B2 C. (2ABC)?1?2C?1B?1A?1 D. (2ABC)??2C?B?A? (二)填空题(每小题2分,共20分)
?1?12?10 ⒈1?40? 7 .
00?1?1 ⒉1111?1x是关于x的一个一次多项式,则该多项式一次项的系数是 2 . 1?15 ⒊若A为3?4矩阵,B为2?5矩阵,切乘积AC?B?有意义,则C为 5×4 矩阵.
?11??15?
A?? ⒋二阶矩阵?01??01?.
?????12???120??? ⒌设A?40,B??,则(A?B?)??????3?14????34???06?3??5?18? ??⒍设A,B均为3阶矩阵,且A?B??3,则?2AB? 72 .
?12 ⒎设A,B均为3阶矩阵,且A??1,B??3,则?3(A?B)? -3 .
⒏若A???1a??为正交矩阵,则a? 0 . 01??word文档 可自由复制编辑
?2?12??? ⒐矩阵402的秩为 2 . ????0?33???A1 ⒑设A1,A2是两个可逆矩阵,则??O(三)解答题(每小题8分,共48分) ⒈设A??O?A2???1?A1?1???OO?. ?1?A2??12???11??54?,求⑴A?B;⑵A?C;⑶2A?3C;,B??,C???????35??43??3?1?⑷A?5B;⑸AB;⑹(AB)?C.
?03??66??1716?答案:A?B?? A?C?2A?3C???????37??18??04??2622??77??5621?? A?5B??AB?(AB)C???2312??15180?
120??????
??114??121103?????,求AC?BC. ⒉设A??,B?,C??3?21??????0?12??21?1???002????114??024?????6?410? 解:AC?BC?(A?B)C??3?21?????2210??201??0??02????310??102????? ⒊已知A??121,B??111,求满足方程3A?2X?B中的X. ???????342???211??解:?3A?2X?B
3??4?1??2?83?2???11?5?2????11? ? X?(3A?B)???25222????71157115??????222?? ⒋写出4阶行列式
word文档 可自由复制编辑
1?10302432?51106 30中元素a41,a42的代数余子式,并求其值.
020120答案:a41?(?1)4?1436?0 a42?(?1)4?2?136?45
2?530?53 ⒌用初等行变换求下列矩阵的逆矩阵:
?12??12?2?? ⑴ 21?2; ⑵ ????1??2?21????1解
?1?A|I????2?2????1?????0??0??1?r231?r39234?312??; ⑶
11?1??0?2?6?(
?1?1??1??1011100110?0??. 0??1?1
)
0?301?2?3?6?292231?2?0?0??1???:
21?221?20101?23223129?010?10??2r?r2??2r1??r30???1????0?01???2?3?621?6?2?3?2109209129010231?32?9??0???2r3?r1?1?2r3?r20???????0??1??0?9???010?2r2?r10??13??2r2?r30????????0?01????22?99?12???99?21??99??010?A?1?1?9?2???9?2?9?29192?92?9?2? ??9?1?9??(2)A?100?22?6?2617??1??175???1120?130?1?(过程略) (3) A??????1?0?1102?1????4?1?530?1???00?0?? 0??1??1?1 ⒍求矩阵??1??2解
010110111123011210001?0??的秩. 1??1?:
word文档 可自由复制编辑
?1?1??1??2011011??r?r?112?0?r1?r3101100??2r?r4???1?????0012101???113201??0?1011011??01?101?1?1?r3?r4????????00011?10???0000000??1??1?01?101?1?1??r?r24???????00011?10???1?112?2?1??0011011?1?101?1?1??0011?10??0011?10?01101? R(A)?3
(四)证明题(每小题4分,共12分)
⒎对任意方阵A,试证A?A?是对称矩阵. 证明:(A?A')'?A'?(A')'?A'?A?A?A'
? A?A?是对称矩阵
⒏若A是n阶方阵,且AA??I,试证A?1或?1. 证明:? A是n阶方阵,且AA??I
? AA??AA??A?I?1 ?
2A?1或A??1
⒐若A是正交矩阵,试证A?也是正交矩阵. 证明:? A是正交矩阵
? A?1?A?
? (A?)?1?(A?1)?1?A?(A?)?
即A?是正交矩阵
工程数学作业(第二次)(满分100分)
第3章 线性方程组
(一)单项选择题(每小题2分,共16分)
?x1?2x2?4x3?1?x1???为(C )
x2?x3?0的解?x ⒈用消元法得?.
?2????x3?2?x3??? A. [1,0,?2]? B. [?7,2,?2]? C. [?11,2,?2]? D. [?11,?2,?2]?
word文档 可自由复制编辑