为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。 2、点的坐标的概念
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当a?b时,(a,b)和(b,a)是两个不同点的坐标。
考点二、不同位置的点的坐标的特征 (3分) 1、各象限内点的坐标的特征 点P(x,y)在第一象限?x?0,y?0
点P(x,y)在第二象限?x?0,y?0 点P(x,y)在第三象限?x?0,y?0 点P(x,y)在第四象限?x?0,y?0 2、坐标轴上的点的特征
点P(x,y)在x轴上?y?0,x为任意实数 点P(x,y)在y轴上?x?0,y为任意实数
点P(x,y)既在x轴上,又在y轴上?x,y同时为零,即点P坐标为(0,3、两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线上?x与y相等
点P(x,y)在第二、四象限夹角平分线上?x与y互为相反数 4、和坐标轴平行的直线上点的坐标的特征
位于平行于x轴的直线上的各点的纵坐标相同。 位于平行于y轴的直线上的各点的横坐标相同。 5、关于x轴、y轴或远点对称的点的坐标的特征
点P与点p’关于x轴对称?横坐标相等,纵坐标互为相反数 点P与点p’关于y轴对称?纵坐标相等,横坐标互为相反数 点P与点p’关于原点对称?横、纵坐标均互为相反数
6、点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离: (1)点P(x,y)到x轴的距离等于y (2)点P(x,y)到y轴的距离等于x
(3)点P(x,y)到原点的距离等于x2?y2 考点三、函数及其相关概念 (3~8分)
第 21 页 共 85 页
0) 21
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 考点四、正比例函数和一次函数 (3~10分)
1、正比例函数和一次函数的概念
一般地,如果y?kx?b(k,b是常数,k?0),那么y叫做x的一次函数。 特别地,当一次函数y?kx?b中的b为0时,y?kx(k为常数,k?0)。这时,
第 22 页 共 85 页
22
y叫做x的正比例函数。
2、一次函数的图像
所有一次函数的图像都是一条直线
3、一次函数、正比例函数图像的主要特征:
一次函数y?kx?b的图像是经过点(0,b)的直线;正比例函数y?kx的图像是经过原点(0,0)的直线。 k的符b的符
号
号
b>0
k>0
b<0
函数图像
y
0 x
y
0 x
第 23 页 共 85 页图像特征
图像经过一、二、三象限,y随x的增大而增大。
图像经过一、三、四象限,
y随x的增大而增大。
23
y
b>0
0 x
K<0
y
图像经过二、三、四象限,
b<0
y随x的增大而减小。
0 x
注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。
第 24 页 共 85 页
24
图像经过一、二、四象限,y随x的增大而减小
4、正比例函数的性质
一般地,正比例函数y?kx有下列性质:
(1)当k>0时,图像经过第一、三象限,y随x的增大而增大; (2)当k<0时,图像经过第二、四象限,y随x的增大而减小。 5、一次函数的性质
一般地,一次函数y?kx?b有下列性质: (1)当k>0时,y随x的增大而增大 (2)当k<0时,y随x的增大而减小 6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式y?kx(k?0)中的常数k。确定一个一次函数,需要确定一次函数定义式y?kx?b(k?0)中的常数k和b。解这类问题的一般方法是待定系数法。 考点五、反比例函数 (3~10分) 1、反比例函数的概念
一般地,函数y?(k是常数,k?0)叫做反比例函数。反比例函数的解析式也可以写成y?kx?1的形式。自变量x的取值范围是x?0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x?0,函数y?0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
第 25 页 共 85 页
25
kx