圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。 2、圆的中心对称性
圆是以圆心为对称中心的中心对称图形。
考点五、弧、弦、弦心距、圆心角之间的关系定理 (3分) 1、圆心角
顶点在圆心的角叫做圆心角。 2、弦心距
从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 考点六、圆周角定理及其推论 (3~8分) 1、圆周角
顶点在圆上,并且两边都和圆相交的角叫做圆周角。 2、圆周角定理
一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
第 56 页 共 85 页
56
考点七、点和圆的位置关系 (3分)
设⊙O的半径是r,点P到圆心O的距离为d,则有: d
不在同一直线上的三个点确定一个圆。 2、三角形的外接圆
经过三角形的三个顶点的圆叫做三角形的外接圆。 3、三角形的外心
三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
4、圆内接四边形性质(四点共圆的判定条件) 圆内接四边形对角互补。 考点九、反证法 (3分)
先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。 考点十、直线与圆的位置关系 (3~5分)
直线和圆有三种位置关系,具体如下:
(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆
第 57 页 共 85 页
57
的切线,
(3)相离:直线和圆没有公共点时,叫做直线和圆相离。 如果⊙O的半径为r,圆心O到直线l的距离为d,那么: 直线l与⊙O相交?d
考点十一、切线的判定和性质 (3~8分) 1、切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线。 2、切线的性质定理
圆的切线垂直于经过切点的半径。 考点十二、切线长定理 (3分) 1、切线长
在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
2、切线长定理
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
考点十三、三角形的内切圆 (3~8分) 1、三角形的内切圆
与三角形的各边都相切的圆叫做三角形的内切圆。 2、三角形的内心
三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内
第 58 页 共 85 页
58
心。
考点十四、圆和圆的位置关系 (3分) 1、圆和圆的位置关系
如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。 如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。 2、圆心距
两圆圆心的距离叫做两圆的圆心距。 3、圆和圆位置关系的性质与判定
设两圆的半径分别为R和r,圆心距为d,那么 两圆外离?d>R+r 两圆外切?d=R+r
两圆相交?R-r
如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。 考点十五、正多边形和圆 (3分) 1、正多边形的定义
各边相等,各角也相等的多边形叫做正多边形。 2、正多边形和圆的关系
第 59 页 共 85 页
59
只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
考点十六、与正多边形有关的概念 (3分) 1、正多边形的中心
正多边形的外接圆的圆心叫做这个正多边形的中心。 2、正多边形的半径
正多边形的外接圆的半径叫做这个正多边形的半径。 3、正多边形的边心距
正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。 4、中心角
正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。 考点十七、正多边形的对称性 (3分) 1、正多边形的轴对称性
正多边形都是轴对称图形。一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。
2、正多边形的中心对称性
边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。 3、正多边形的画法
先用量角器或尺规等分圆,再做正多边形。 考点十八、弧长和扇形面积 (3~8分) 1、弧长公式
n°的圆心角所对的弧长l的计算公式为l?2、扇形面积公式
第 60 页 共 85 页
60
n?r 180