25.(8分)(2015?济南)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他” 四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题: 类别 小说 戏剧 散文 其他 合计 频数(人数) 频率 4 10 6 m 0.5 0.25 1 (1)计算m= ;
(2)在扇形统计图中,“其他”类所占的百分比为 ;
(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.
26.(9分)(2015?济南)如图1,点A(8,1)、B(n,8)都在反比例函数y=(x>0)的图象上,过点A作AC⊥x轴于C,过点B作BD⊥y轴于D. (1)求m的值和直线AB的函数关系式;
(2)动点P从O点出发,以每秒2个单位长度的速度沿折线OD﹣DB向B点运动,同时动点Q从O点出发,以每秒1个单位长度的速度沿折线OC向C点运动,当动点P运动到D时,点Q也停止运动,设运动的时间为t秒. ①设△OPQ的面积为S,写出S与t的函数关系式;
第6页(共37页)
②如图2,当的P在线段OD上运动时,如果作△OPQ关于直线PQ的对称图形△O′PQ,是否存在某时刻t,使得点Q′恰好落在反比例函数的图象上?若存在,求Q′的坐标和t的值;若不存在,请说明理由.
第7页(共37页)
27.(9分)(2015?济南)如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D. (1)直接写出∠NDE的度数;
(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由; (3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD=其他条件不变,求线段AM的长.
,
第8页(共37页)
28.(9分)(2015?济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C. (1)求抛物线的函数表达式;
(2)如图1,连接CB,以CB为边作?CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且?CBPQ的面积为30,求点P的坐标; (3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为
上的一动点(不
与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.
第9页(共37页)
2015年山东省济南市中考数学试卷
参考答案与试题解析
一、选择题(共15小题,每小题3分,满分45分,每小题只有一个选项符合题意) 1.(3分)(2015?济南)﹣6的绝对值是( ) 6 A.
考点:绝 对值.菁优网版权所有 分析:根 据绝对值的概念可得﹣6的绝对值是数轴表示﹣6的点与原点的距离. 解答:解 :﹣6的绝对值是6, 故选:A. 点评:此 题主要考查了绝对值,关键是掌握绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值.
2.(3分)(2015?济南)新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为( ) 0.109×105 A.
考点:科 学记数法—表示较大的数.菁优网版权所有 分析:科 学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 解答:解 :将10900用科学记数法表示为:1.09×104. 故选:B. 点评:此 题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.(3分)(2015?济南)如图,OA⊥OB,∠1=35°,则∠2的度数是( )
第10页(共37页)
B. ﹣6 ±6 C. D. 1.09×104 B. 1.09×103 C. 109×102 D.