又
?z?y?1?arcsin3xy?(y?1)1?13x2()y1?x????3?y??23??xy2
所以
?z?yx?18y?1?1?arcsin318?1?arcsin12?1?π6.
4.验证z?e?11???+??xy?满足x2?z?x1?y2?z?y?2z.
解:
?z?x?(1x?1y)?e???1x2?(1x?1y)?x2e
?z?y?(1x?1y)?e???1y2?1y1x22?e11(?)xy
所以x2?z?x?y2?z?y?x?2?(1x?1y)e1y?y?21y2?(1x?1y)e
?(?1x?) ?2e?2z
?xy222,x?y?0?25.设函数z??x?y4,试判断它在点(0,0)处的偏导数是否存在?
22?0,x?y?0?解:zy?(0,0)?lim zx?(0,0)?limf(0,0??y)?f(0,0)?yf(0??x,0)?f(0,0)?x?y?0?lim0?0?y0?0?x?y?0?0
?x?0?lim?x?0?0
所以函数在(0,0)处的偏导数存在且zx?(0,0)?zy?(0,0)?0.
12?2z?(x?y),?6.求曲线?在点(2,4,5)处的切线与x轴正向所成的倾角. 4?y?4?12?2?z?z?(x?y)??,解:因为 故曲线?在点(2,4,5)的切线斜率是4?x42?x?y?4??z2xx(2,4,5)?1,
所以切线与x轴正向所成的倾角??arctan1?π4.
6
7.求函数z?xy在(2,3)处,当Δx=0.1与Δy?-0.2时的全增量Δz与全微分dz. 解:??z?x?y,?z?y?x
? dz??z?xdx??z?ydy
而?z?(x??x)(y??y)?xy?x?y?y?x??x?y 当?x?0.1,?y??0.2,x?2,y?3时,
dz?3?0.1?2?(?0.2)??0.1
?z?2?(?0.2)?3?0.1?0.1?(?0.2)??0.12. 8.求下列函数的全微分:
(1) 设u?(x)z,求du|(1,1,1).(2) 设z?y,求dz.
yx2?y2解:(1)?
?u?x?z?(xy)z?1?1y,?u?y?z?(xy)z?1??x?uxzxy2;?z?(y)lny, ??u?u?x(1,1?,11),?y(?1,?1,11 ),?u?z?zz?z(1,1,1)?0,于是du(1,1,1)??x(1,1,1)dx??ydy??(1,1,1)?z(1,1,1)dz?dx?dy?y?2x)??z2x2?y2 (2?x?x2?y2??xy(x2?y2)x2?y2
x2?y2?y?2y222
?z2x?y?y?x2?y2?x(x2?y2)x2?y2
2? dz??z?xdx??z?ydy??xy(x2?y2d?xx)x2?y2x(?2 yy)2x?2y2d
习题8?4
1.求下列各函数的导数:
(1) z?e2x?3y, x?cost, y?t2; (2) z?tan(3t?2x2?y3), x?1t,y?t.
7
解:(1)
dz?zdxdt??xdt??z?y?dydt ?e2x?3y?2?(?sint)?e2x?3y?3?2t =2e2x?3y(3t?sint)
?2e2cost?3t2(3t?sint) (2)
dz?f?fdt??t??x?dxdt??fy?y?ddt
?sec2(3t?2x2?y3)?3?sec2(3t?2x2?y3)?4x?1
t2
?sec2(3t?2x2?y3)?3y2?12t3 ?(3?42t3?32t)sec(3t?2t2?t2).
2.求下列各函数的偏导数:
(1) z?x2y?xy2, x?ucosv, y?usinv;
(2) z?euv, u?lnx2?y2, v?arctan
yx.
解:(1)
?z?x?z??u??z?x??u??y?y?u ?(2xy?y2)cosv?(x2?2xy)sinv ?2u2sinvcos2v?u2sin2vcosv?u2sinvcos2v?2u2sin2vcosv
?3u2sinvcosv(cosv?sinv)
?z?z?x??v??x?z?y?v??y??v ??(2xy?y2)usinv?(x2?2xy)ucosv ??2u3sin2vcosv?u3sin3v?u3cos3v?2u3sinvcos2v
??2u3sinvcosv(sinv?cosv)?u3(sin3v?cos3v) (2)
?z?z??u1xuv?x??u?x??z?v??v?x?veuv??1?yx2?y2?22x2?y2?ue1?(y?2x2x)22y ?euvx?y?arctanxy22x2?y2(xv?yu)?elnx2?y2(xarctanx?ylnx?y)
8
?zz?u?z?12y?y???u??y??v?v?y?veuvx2?y2?ueuv?1?12x2?y2?1?(y2x
x)x2?y2uv?arctanyx ?e2x2?y2(yv?xu)?elnx2?y2(xarctanyx?xlnx?y2)
3.求下列函数的一阶偏导数,其中f可微: (1) u?f (
xy,yz); (2) z?f(x2?y2); (3) u?f(x, xy, xyz).
解:(1)
?u?x?f1??1y?f2??0?1?yf1
?u?y?f1???xy2?f2??1z?1zfx2??y2f1?
?u?z?fy1??0?f2???yz2?z2f2?
(2)令u?x2?y2,则z?f(u)
?zu?x?dfdu???x?f?(u)?2x?2xf?(x2?y2)
?z?y?dfdu??u??f?(u)?2y?2yf?(x2?y2y)
(3)令t?x,v?xy,w?xyz,则u?f(t,v,w).
?uf?f?v?w?x???t?dtdx?v??x??f?w??x?f1??1?f2??y?f3??yz?f1??yf2??yzf3???u?f?y??t?dtdy??f?v??v?f?y??w??w?y?f1??0?f2??x?f3??xz?xf2??xzf3?
?u?fdt?fw?z??t?dz??v??v?f?z??w???z?f1??0?f2??0?f3??xy?xyf3?
4.设z?xy?x2F(u),u?
yx,F(u)可导.证明:
x?z?y?z?x?y?2z.
证:??zy?x?y?2xF(u)?x2F?(u)??x2?y?2xF(u)?yF?(u)
?z?y?x?x2F?(u)?1x?x?xF?(u)
9
?x?z?x?y?z?y?xy?2xF(u)?xyF?(u)?xy?xyF?(u)
22 ?2[xy?xF(u)]?? z5.利用全微分形式不变性求全微分:
(1) z?(x2?y2)sin(2x?y); (2) u?
yf(x?y?z)v222,f可微.
解:(1)令u?x2?y2,v?sin(2x?y),则z?u
dz??z?udu??z?vdv?vuv?1d(x?y)?u?lnudsin(2x?y)
22v
?vuvv?1(2xdx?2ydy)?ulnu?cos(2x?y)d(2x?y)?2(xdx?ydy)?lnu?cos(2x?y)(2dx?dy)]2sin(2x?y)v?u[2vu?(x?y)?2sin(2x?y)?22(xdx?ydy)?cos(2x?y)ln(x?y)(2dx?dy)??22x?y??(2)du?1fdy?y??1f2df?1fdy?yf2222222f?(x?y?z)d(x?y?z)
?1fdy?222yf?(x?y?z)
?f1222(2xdx?2ydy?2zdz)222f(x?y?z)2dy?2yf?(x?y?z)f(x?y?z)2222
(xdx?ydy?zdz)6.求下列隐函数的导数:
(1) 设ex?y?xyz?ex,求z?,z?y; (2)设xx?yxzx?ln
zy,求
?z?z. ,?x?y解:(1)设F(x,y,z)?e Fx??e 故zx???x?y?xyz?e?0,则
xx?y?yz?e,Fy??ee?exx?y?xz,Fz??xy
FyFz??ex?yFx?Fz??yzxy,zy????xzxy
(2)设F(x,y,z)?xz?lnzy?0,则
Fx??
1z,Fy???y?z1?xy1x1?2?,Fz??2????2? zyyzzyzz10