第八章
习题8?1
1.求下列函数的定义域,并画出其示意图: (1)z?1?yxxa22?yb22; (2)z?1ln(x?y);
2
2
(3)z?arcsin; (4)z?x?xa22. y-arccos(x?y)
22解:(1)要使函数有意义,必须1??yb?0即
xa22?yb22?1,
22??xy 则函数的定义域为?(x,y)|2?2?1?,如图8-1阴影所示.
ab??
图8-1 图8-1
(2)要使函数有意义,必须???ln(x?y)?0x?y?0
即???x?y?1x?y,
则函数的定义域为{(x,y)|x?y且x?y?1},如图8-2所示为直线y?x的下方且除去
y?x?1的点的阴影部分(不包含直线y?x上的点).
?yy??1?1??x?y?x?x?y??x??1?? (3)要使函数有意义,必须?x,即?, 即?或?,xx?0x?0????x?0x?0??所以函数的定义域为
{(x,y)|x?0且?x?y?x}?{(x,y)|x?0,x?y??x},
如图8-3阴影所示.
1
图8-3 图8-4
?x?y??x?0? (4)要使函数有意义,必须?0?y?0 即
?y?0?, ??x2?y?|x2?y2|?1??x2?y2?1所以函数的定义域为
{(x,y)|x?0,y?0,x2?y,x2?y2?1},
如图8-4阴影所示.
2.设函数f(x,y)?x3?2xy?3y2,求 (1) f(?2,3); (2) f ?1?,2??; (3)f(x?y,x?y). ?xy?解:(1)f(?2,3)?(?2)3?2?(?2)?3?3?32?31;
32 (2)f?12??1?12?2?1412?,?xy?????x??2???3?xy??y???x3?xy?y2;
(3)f(x?y,x?y)?(x?y)3?2(x?y)(x?y)?3(x?y)2 ?(x?y)3?2(x2?y2)?3(x?y)2. 3.设F(x,y)?y+f(x-1),若当y?1时,F(x,1)?x,求f(x)及F(x,y)的表达式.解:由F(x,1)?x得x?y?f(x?1)
即 f(x?1)?x?1 令x?1?t则x?(1?t)2代入上式有
f(t)?(1?t)2?1?t(t?2)
所以 f(x)?x(x?2)
2
于是
F(x,y)? ?y?f(x?1)?y?x?1y?(x?1)(x?1)
4.指出下列集合A的内点、边界点和聚点:
(1)A?{(x,y)0?x?1,0?y?x};(2)A?{(x,y)3x?y?1}; (3)A={(x,y)|x+y>0}; (4)A?(0,2]. 解:(1)内点{(x,y)|0?x?1,0?y?x}
边界点{(x,y)|0?x?1,y?0}?{(x,y)|0?y?1,x?1} ?{(x,y)|y?x,0?x?1} 聚点A (2)内点? 边界点A 聚点A (3)内点A
边界点(0,0) 聚点A
(4)内点? 边界点[0,2] 聚点[0,2]
2
2
习题8?2
1.讨论下列函数在点(0,0)处的极限是否存在:
(1) z?
xy224x?y; (2) z?
x?yx?y2.
ky2444解:(1)当P(x,y)沿曲线x?ky趋于(0,0)时,有limf(x,y)?limy?0y?kx2y?0ky?y?k1?k2 这个值随k的不同而不同,所以函数Z=xy224x?y在(0,0)处的极限不存在.
(2)当P(x,y)沿直线y?kx(k?1)趋于(0,0)时,有
limf(x,y)?limy?0y?kxx?kxx?kxx?0?1?k1?k (k?1),这个极限值随k的不同而不同,所以函数
3
Z=x?yx?y在(0,0)处的极限不存在.
2.求下列极限:
(1) limsinxyxxyxy?1?1x?0y?0; (2)lim1?xyx?y22x?0y?1;
(3)limx?0y?0; (4)limsinxyx?y22x??y??.
解:(1)limsinxyx1?xyx?yxy2x?0y?0?limy?x?0y?0sin(xy)xy?0
(2)limx?0y?12?1?0?10?122?1
(3)limx?0y?0xy?1?1?limxy(xy?1?1)(xy?1?1)(xy?1?1)x?0y?0?lim(xy?1?1)?2
x?0y?0 (4)当x??,y??时,
1x?y22是无穷小量,而sinxy是有界函数,所以它们的积
为无穷小量,即limsinxyx?y22x??y???0.
3.求函数z?
y?2xy?2x22的间断点.
解:由于y?2x?0时函数无定义,故在抛物线y?2x处函数间断,函数的间断点是
{(x,y)|y?2x,x?R}.
222
习题8?3
1.求下列各函数的偏导数:
(1) z?(1?x)y; (2) z?lntan
yxzyx;
(3) z?arctan
?z?x; (4) u?yx.
y?1解:(1)?y(1?x)
4
?zy?y?(1?x)ln(1?x);
(2)?z?x?1?sec2yx??yyy2ytanyx2??x2cotxsecx; x
?zy1?y?1?sec2tanyx?x?1xcoty2yxsecx; x (3)
?z1?y?y?x?2?1??x2?x2?y2;
?y??x??
?z11?y?2?21??y?x?xx?y2;
??x??z (4)
?u?x?yx?lny??zlnyzx2??zx2?yx;
?uz?z?1
?yxyx;?uz?yx?lny?1?z?lnyz
xx?yx.2.已知f(x,y)?e?sinx(x?2y),求fx?(0,1),fy?(0,1).
解:f?sinxx?(x,y)?e?(?cosx)(x?2y)?e?sinx?e?sinx[?cosx?(x?2y)?1] fy?(x,y)??esixn??2?2esxi
n所以f?sin0x?(0,1)?e(?cos0?(0?2?1)?1)??1
f?y?(0,1?)2sien0? 23.设z?x?y?(y?1)arcsin3y?zx,求
?z.
?xx?1,2y?1?yx?18y?1解:
?zf(x,1)?x?dx?1dx?ddx(x?1)?1
x?1y?122x?12 5