?x?y?36?x?y?36 A.?B.?x?2y?100?2x?4y?100??x?y?36?x?y?36 C.?D..?2x?2y?1004x?2y?100??3.为满足用水量不断增长的需求,某市最近新建甲、乙、?丙三个水厂,这三个水厂的日供水量共计11.8万m3,?其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m3.
(1)求这三个水厂的日供水量各是多少万立方米?
(2)在修建甲水厂的输水管道的工程中要运走600t土石,运输公司派出A型,B?型两种载重汽车,A型汽车6辆,B型汽车4辆,分别运5次,可把土石运完;或者A型汽车3辆,B型汽车6辆,分别运5次,也可把土石运完,那么每辆A型汽车,每辆B型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)
4. 2009年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30km远的郊区进行抢修.维修工骑摩托车先走,15min后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求这两种车的速度.
5. 某体育彩票经售商计划用45000?元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A、B、C三种不同价格的彩费,进价分别是A?种彩票每张1.5元,B种彩票每张2元,C种彩票每张2.5元. (1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案;
(2)若销售A型彩票一张获手续费0.2元,B型彩票一张获手续费0.3元,C型彩票一张获手续费0.5元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?
(3)若经销商准备用45000元同时购进A、B、C三种彩票20扎,请你设计进票方案.
—◇◇ 21 ◇◇—
第9课时 方程的应用(二)
【知识梳理】
1.一元二次方程的应用; 2. 列方程解应用题的一般步骤; 3. 问题中方程的解要符合实际情况.
【例题精讲】 例1. 一个两位数的十位数字与个位数字和是7,把这个两位数加上45后,?结果恰好成为数字对调后组成的两位数,则这个两位数是( ) A.16 B.25 C.34 D.61 例2. 如图,在宽为20米、长为30米的矩形地面上修 建两条同样宽的道路,余下部分作为耕地.若耕地面积 需要551米2,则修建的路宽应为( ) A.1米
B.1.5米
C.2米
D.2.5米
例3. 为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x,则下列方程正确的是( ) A.2500x2?3600 C.2500(1?x%)2?3600
B.2500(1?x)2?3600
D.2500(1?x)?2500(1?x)2?3600
例4. 某地出租车的收费标准是:起步价为7元,超过3千米以后,每增加1千米,?加收2.4元.某人乘这种出租车从甲地到乙地共付车费19元,?设此人从甲地到乙地经过的路程为x千米,那么x的最大值是( ) A.11 B.8 C.7 D.5
例5. 已知某工厂计划经过两年的时间,?把某种产品从现在的年产量100
—◇◇
22 ◇◇—
万台提高到121万台,那么每年平均增长的百分数约是________.按此年平均增长率,预计第4年该工厂的年产量应为_____万台.
例6. 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000?元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?
例7. 幼儿园有玩具若干份分给小朋友,如果每人分3件,那么还余59件.?如果每人分5件,那么最后一个人不少于3件但不足5件,试求这个幼儿园有多少件玩具,有多少个小朋友.
【当堂检测】
1. 某印刷厂1?月份印刷了书籍60?万册,?第一季度共印刷了200万册,问2、3月份平均每月的增长率是多少?
2. 为了营造人与自然和谐共处的生态环境,某市近年加快实施城乡绿化一体化工程,创建国家城市绿化一体化城市.某校甲,乙两班师生前往郊区参加植树活动.已知甲班每天比乙班少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2天,求甲,乙两班每天各植树多少棵?
3. A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动.
⑴ P、Q两点从出发开始到几秒时四边形PBCQ的面积为33 cm2? ⑵ P、Q两点从出发开始到几秒时,点P和点Q的距离是10 cm?
—◇◇
23 ◇◇—
4. 甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg.
(1)乙班比甲班少付出多少元?
(2)甲班第一次,第二次分别购买苹果多少千克?
购苹果数
第10课时 一元一次不等式(组)
【知识梳理】
1.一元一次不等式(组)的概念; 2.不等式的基本性质; 3.不等式(组)的解集和解法.
—◇◇
30kg以下不超过30kg 但 不超过50kg 每千克价3元 格 2.5元 2元 50kg 以上 24 ◇◇—
【思想方法】
1.不等式的解和解集是两个不同的概念; 2.解集在数轴上的表示方法.
【例题精讲】 例1.如图所示,O是原点,实数a、b、c在数轴上对应的点分别为A、B、C,则下列结论错误的是( )
A. a?b?0 B. ab?0 C. a?b?0 D. b (a?c)?01例2. 不等式?x?1的解集是( )
21A.x?? B.x??2 C.x??2
2 B A O C D.x??
12 例3. 把不等式组??1?2x?1??1的解集表示在数轴上,下列选项正确的是
?x?2≤31
( ) 0
1
?10
?10 1
?10 1
A. B. C.
D.
??x≤2例4. 不等式组?的整数解共有( )
x?2?1?A.3个 B.4个 C.5个 D.6个
例5. 小明和爸爸妈妈三人玩跷跷板,三人的体重一共为150kg,爸爸坐
在跷跷板的一端,小明体重只有妈妈一半,小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地,那么小明的体重应小于( ) A. 49kg B. 50kg C. 24kg D. 25kg
例6.若关于x的不等式x-m≥-1的解集如图所示,则m等于( )
01
A.0 C.2
B.1 D.3
—◇◇
23425 ◇◇—