【课题】7.1 平面向量的概念及线性运算
【教学目标】
知识目标:
(1)了解向量的概念; (2)理解平面向量的线性运算; (3)了解共线向量的充要条件 能力目标:
(1)能将生活中的一些简单问题抽象为向量问题; (2)正确进行平面向量的线性运算,并作出相应的图形; (3)应用共线向量的充要条件判断两个向量是否共线; (4)通过相关问题的解决,培养计算技能和数学思维能力 情感目标:
(1)经历利用有向线段研究向量的过程,发展“数形结合”的思维习惯. (2)经历合作学习的过程,树立团队合作意识.
【教学重点】
向量的线性运算.
【教学难点】
已知两个向量,求这两个向量的差向量以及非零向量平行的充要条件.
【教学设计】
从“不同方向的力作用于小车,产生运动的效果不同”的实际问题引入概念. 向量不同于数量,数量是只有大小的量,而向量既有大小、又有方向.教材中用有向线段来直观的表示向量,有向线段的长度叫做向量的模,有向线段的方向表示向量的方向.数量可以比较大小,而向量不能比较大小,记号“a>b”没有意义,而“︱a︱>︱b︱”才是有意义的.
教材通过生活实例,借助于位移来引入向量的加法运算.向量的加法有三角形法则与平行四边形法则.
向量的减法是在负向量的基础上,通过向量的加法来定义的.即a-b=a+(-b),它可以通过几何作图的方法得到,即a-b可表示为从向量b 的终点指向向量a的终点的向量.作向量减法时,必须将两个向量平移至同一起点.
实数?乘以非零向量a,是数乘运算,其结果记作?a,它是一个向量,其方向与向量a相同,其模为a的?倍.由此得到a∥b?a??b.对向量共线的充要条件,要特别注意“非零向量a、b”与“??0 ”等条件.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
教 学 过 程 *揭示课题 教师 学生 教学 时行为 行为 意图 间 介绍 了解 观看 课件 思考 自我 分析 图7-1 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 从实例出发使学生自然的走向知识点 0 3 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N的力,按照不同的方向拉一辆车,效果一样吗? ① 播放 课件 引导 分析 *动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作AB.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作a.
教 学 过 程 A教师 学生 教学 时行为 行为 意图 间 a 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, AB的模依次记作a,AB. B 10 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. *巩固知识 典型例题 例1 一架飞机从A处向正南方向飞行200km,另一架飞机从A处朝北偏东45°方向飞行200km, 两架飞机的位移相同吗?分别用有向线段表示两架飞机的位移. 解 位移是向量.虽然这两个向量的模相等,但是它们的方向不同,所以两架飞机的位移不相同.两架飞机位移的有向线段表示分别为图7-3中的有向线段a 与b. b A a 图7-3 说明 强调 引领 讲解 说明 强调 含义 观察 思考 主动 求解 通过例题进一步领会 13
教 学 过 程 *运用知识 强化练习 说出下图中各向量的模,并指出其中的单位向量 (小方格为1). A H L Z Q C D F P K G B M TN E 教师 学生 教学 时行为 行为 意图 间 提问 巡视 指导 思考 口答 及时 了解 学生 知识 掌握 得情 况 18 20 图7?4 *创设情境 兴趣导入 观察图7?4中的向量AB与MN,它们所在的直线平行,两个向量的方向相同;向量CD与PQ所在的直线平行,两个向量的方向相反. 播放 课件 质疑 引导 分析 总结 归纳 仔细 分析 讲解 关键
观看 课件 自我 分析 从实例出发使学生自然的走向知识点 带领 学生 总结 *动脑思考 探索新知 【新知识】 方向相同或相反的两个非零向量叫做互相平行的向量.向量a与向量b平行记作a//b. 规定:零向量与任何一个向量平行. 由于任意一组平行向量都可以平移到同一条直线上,因此相互平行的向量又叫做共线向量. 思考 归纳 理解 记忆 教 学 过 程 【想一想】 图7?4中,哪些向量是共线向量? *动脑思考 探索新知 【新知识】 图7?4中的平行向量AB与MN,方向相同,模相等;平行向量HG与TK,方向相反,模相等. 我们所研究的向量只有大小与方向两个要素.当向量a与向量b的模相等并且方向相同时,称向量a与向量b相等,记作a = b .也就是说,向量可以在平面内任意平移,具有这种性质的向量叫做自由向量. 与非零向量a的模相等,且方向相反的向量叫做向量a的负向量,记作?a. 规定:零向量的负向量仍为零向量. 显然,在图7-4中,AB= MN,GH= -TK. 教师 学生 教学 时行为 行为 意图 间 词语 思考 归纳 理解 记忆 思考 归纳 理解 记忆 23 28 总结 归纳 仔细 分析 讲解 关键 词语