好文档 - 专业文书写作范文服务资料分享网站

概率论与数理统计理工类第四版吴赣昌主编课后习题答案完整版

天下 分享 时间: 加入收藏 我要投稿 点赞

如有你有帮助,请购买下载,谢谢!

随机事件及其概率

1.1 随机事件

习题1试说明随机试验应具有的三个特点.

习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.

1.2 随机事件的概率 1.3 古典概型与几何概型 1.4 条件概率 1.5 事件的独立性

复习总结与总习题解答

习题3. 证明下列等式: 习题5. 习题6. 习题7 习题8 习题9 习题10 习题11 习题12 习题13 习题14 习题15 习题16 习题17 习题18 习题19 习题20 习题21 习题22 习题23 习题24 习题25 习题26

第二章 随机变量及其分布

2.1 随机变量

习题1随机变量的特征是什么?

解答:①随机变量是定义在样本空间上的一个实值函数. ②随机变量的取值是随机的,事先或试验前不知道取哪个值. ③随机变量取特定值的概率大小是确定的.

1页

如有你有帮助,请购买下载,谢谢!

习题2试述随机变量的分类.

解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量. 习题3盒中装有大小相同的球10个,编号为0,1,2,?,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.

解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3}, 定义随机变量X如下:

X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3 则X取每个值的概率为

P{X=0}=P{取出球的号码小于5}=5/10, P{X=1}=P{取出球的号码等于5}=1/10, P{X=2}=P{取出球的号码大于5}=4/10. 2.2 离散型随机变量及其概率分布

习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ. 解答:由P{X=1}=P{X=2}, 得

λe-λ=λ^2/2e^-λ,解得λ=2. 习题2

设随机变量X的分布律为 P{X=k}=k15,k=1,2,3,4,5, 试求(1)P{123}. 解答:(1)P{12

=115+215+315=25; (3)P{X>3}=P{X=4}+P{X=5}=415+515=35. 习题3

已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.

解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得 c=3716=2.3125.

由条件概率知 P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0} =12c1-34c=24c-3=26.25=0.32. 习题4

一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.

解答:随机变量X的可能取值为3,4,5.

P{X=3}=C22?1C53=110, P{X=4}=C32?1C53=310, P{X=5}=C42?1C53=35, 所以X的分布律为 X 3 4 5 2页

如有你有帮助,请购买下载,谢谢!

pk 1/10 3/10 3/5 习题5某加油站替出租车公司代营出租汽车业务,每出租一辆汽车,可从出租公司得到3元.因代营业务,每天加油站要多付给职工服务费60元,设每天出租汽车数X是一个随机变量,它的概率分布如下: X pi 10 0.15 20 0.25 30 0.45 40 0.15 求因代营业务得到的收入大于当天的额外支出费用的概率. 解答:因代营业务得到的收入大于当天的额外支出费用的概率为: P{3X>60}, 即P{X>20}, P{X>20}=P{X=30}+P{X=40}=0.6. 就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6. 习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求: (1)X的概率分布; (2)P{X≥5}; (3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少? 解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,?; (2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5; (3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足 P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于 P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m, 故上式化为1-0.9m=0.4, 解上式得 m≈4.85≈5, 因此,以0.6的概率保证在两次调整之间的合格品数不少于5. 习题7设某运动员投篮命中的概率为0.6, 求他一次投篮时,投篮命中的概率分布. 解答:此运动员一次投篮的投中次数是一个随机变量,设为X, 它可能的值只有两个,即0和1. X=0表示未投中,其概率为 p1=P{X=0}=1-0.6=0.4, X=1表示投中一次,其概率为 p2=P{X=1}=0.6. 则随机变量的分布律为 X 0 1 P 0.4 0.6 习题8某种产品共10件,其中有3件次品,现从中任取3件,求取出的3件产品中次品的概率分布. 解答: 设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为 P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120, P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120. X的分布律为 X 0123 P 3120 3页

概率论与数理统计理工类第四版吴赣昌主编课后习题答案完整版

如有你有帮助,请购买下载,谢谢!随机事件及其概率1.1随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2随机事件的概率1.3古典概型与几何概型1
推荐度:
点击下载文档文档为doc格式
4qp980m9yn3pebe0io3703gjy5zcvb00ls0
领取福利

微信扫码领取福利

微信扫码分享