2004年全国硕士研究生入学统一考试数学三试题解析
一、填空题
(1)【答案】a?1,b??4
【详解】本题属于已知极限求参数的反问题. 方法1:根据结论:limf(x)=A,(1) 若g(x)?0,则f(x)?0;(2) 若f(x)?0,g(x)且A?0,则g(x)?0
因为
sixnn(cxo?bs)?0,所以(cxo?bs)?5,且lismix?x?0x?0ex?alimx?0lim(ex?a)?0(否则根据上述结论(2)给极限是0,而不是5),
由 lim(e?a)?lime?lima?1?a?0得a = 1.
x?0x?0x?0xx极限化limsinxx= ?4. (cosx?b)?等价无穷小?lim(cosx?b)?1?b?5,得b
x?0ex?1x?0xsinx(cosx?b)?5??,其中lim??0,解出
x?0ex?a因此,a = 1,b = ?4. 方法2:由极限与无穷小的关系,有
ex(5??)?(cosx?b)sinxa?,
5??ex(5??)?(cosx?b)sinx(cosx?b)sinx?limex?lim?1?0?1 上式两端求极限,a?limx?0x?0x?05??5??(5??)(ex?1)把a = 1代入,再求b,b?cosx?,两端同时对x?0取极限,得
sinx(5??)(ex?1)b?lim(cosx?)
x?0sinx(5??)(ex?1)(5??)x?limcosx?lim?1?lim?1?5??4 x?0x?0x?0sinxx因此,a = 1,b = ?4.
(2)【答案】 ?g?(v) 2g(v)【详解】应先写出f (u , v)的表达式,再求偏导数
令u?xg(y),v?y,从而:x?uu?,于是由f[xg(y),y]?x?g(y), g(y)g(v)推知 f (u , v) =
u?g(v), g(v)???f???1?g?(v)?f1?2f???所以 , ?????2?ug(v)?u?v?v??u??v?g(v)g(v)??
(3)【答案】?【详解】
方法1:作积分变换,令x?1?t,则x:1 211?2?t:??1 22121?2所以
?212f(x?1)dx??121?221?12f(t)dt=?f(t)dt??1(?1)dt
212?121??211112xxedx??1(?1)dx??21exdx2?(1?)?ex2?22221?111?0??.
222(也可直接推出
?121?2xedx?0,因为?xedx积分区间对称,被积函数是关于x是奇
x2121?2x2函数,则积分值为零) 方法2:先写出的f(x?1)表达式
1113???x?1?2(x?1)2x?1e,??x?1?(x?1)e,?x???????2222f(x?1)??即:f(x?1)??
3??1,??????????????????x?1?1??1,x????2?2所以
?212f(x?1)dx??(x?1)e3212(x?1)2dx??3(?1)dx
2321122111113311??(x?1)2(x?1)244?(e?e)??0?????12ed(x?1)??2???e?12222222?2?22.
(4)【答案】 2. 【详解】
222方法1:因为f(x1,x2,x3)?(x1?x2)?(x2?x3)?(x3?x1)
?2x1?2x2?2x3?2x1x2?2x1x3?2x2x3
由二次型f(x1,x2,222,xn)???aijxixj中,aij?aji,所以二次型对应的矩阵的
i?1j?1nni行,j列元素是xi与xj乘积项系数的一半,其中i?j.
1??21??A?12?1于是题中二次型的矩阵为??, 由初等变换得
?1?12????12?1??1?12??1?12???1行的(?2)倍加到2行,????2行互换?211?0?332行?(?1)?3行0?33 A1,?????1?12?1行的(?1)倍加到3行?0?33??000???????从而 r(A)?2, 由二次型的矩阵的秩等于二次型的秩,知二次型的秩为2.
222方法2:因为f(x1,x2,x3)?(x1?x2)?(x2?x3)?(x3?x1)
?2x1?2x2?2x3?2x1x2?2x1x3?2x2x3 ?2(x1?其中y1?x1?222113322x2?x3)2?(x2?x3)2?2y1?y2, 222211x2?x3, y2?x2?x3. 22
2x12?2x22?2x32?2x1x2?2x1x3?2x2x3对x1配方2(x12?x1x2?x1x3)?2x22?2x32?2x2x3111212?2(x1?x2?x3)2?x2?x3?x2x3?2x22?2x32?2x2x3
2222113232?2(x1?x2?x3)2?x2?x3?3x2x3
2222113?2(x1?x2?x3)2?(x2?x3)2
222二次型的秩r(f)=矩阵的秩r(A)=正负惯性指数之和p?q,所以此二次型的秩为2.
(5) 【答案】
1 e【详解】本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算. 指数分布的概率密度为
??x?1??e,若x?0f(x)??,其方差DX?2.
?若x?0??0于是,由一维概率计算公式,P?a?X?b?? P{X?
(6)【答案】?.
2?bafX(x)dx,有
??1DX}=P{X?}??1?e??xdx=?e??x1??????1 e【详解】根据公式E(X?Y)?E(X)?E(Y)和样本方差是总体方差的无偏估计量, 又X1,X2,?Xn1和 Y1,Y2,?Yn2分别是来自总体简单随机样本,X和Y都服从正态分布
1n11n122(Xi?X)]?D(X)??,E[(Yi?Y)2]?D(Y)??2. 即是E[??n?1i?1n?1i?1所以有E[?(Xi?1n1i?X)]??n?1??, E[?(Yi?Y)2]??n?1??2
22i?1n1对于题给式子将分子分离出来即可出现上式,也就不难求出结果.
n2?n122?(X?X)?(Y?Y)?j??i?n1n21i?1j?12??E?E[?(Xi?X)]?E[?(Yj?Y)2]
??n1?n2?2i?1n1?n2?2j?1?????1[(n1?1)?2?(n2?1)?2]??2,故应填 σ2.
n1?n2?2
二、选择题 (7)【答案】(A) 【详解】
方法1:如果f(x)在(a,b)内连续,且极限limf(x)与limf(x)存在,则函数f(x)在
x?a?x?b?(a,b)内有界.
当x ? 0 , 1 , 2时f(x)连续,而
x??1lim?f(x)?lim?x??1?xsin(x?2)?sin(?1?2)sin3???, 22x(x?1)(x?2)(?1?1)(?1?2)18x?0limf(x)?lim??x?0?xsin(x?2)?sin(0?2)sin2???,
x(x?1)(x?2)2(0?1)(0?2)24xsin(x?2)sin(0?2)sin2??, 22x(x?1)(x?2)(0?1)(0?2)4x?0limf(x)?lim??x?0limf(x)?limx?1x?1xsin(x?2)sin(1?2)?lim??,
x(x?1)(x?2)2x?1(x?1)(1?2)2xsin(x?2)sin(x?2)1?lim?lim??, 22x?2x?2x(x?1)(x?2)(x?2)x?2limf(x)?limx?2x?2所以,函数f (x)在(?1 , 0)内有界,故选(A).
方法2:因为limf(x)存在,根据函数极限的局部有界性,所以存在??0,在区间[??,0)?x?0上f(x)有界,又如果函数f (x)在闭区间[a , b]上连续,则f (x)在闭区间[a , b]上有界,根据题设f(x)在[?1,??]上连续,故f(x)在区间上有界,所以f(x)在区间
(?1,0)上有界,选(A).
(8)【答案】 (D) 【详解】考查极限limg(x)是否存在,如果存在,是否等于g(0),通过换元u?x?01, x可将极限limg(x)转化为limf(x).
x?0x??因为 limg(x)?limf()?u??limf(u)= a,又g(0)?0,
x?0x?0u??1x1x所以, 当a?0时,limg(x)?g(0),即g(x)在点x?0处连续,
x?0当a?0时,limg(x)?g(0),即x?0是g(x)的第一类间断点,因此,g(x)在
x?0点x?0处的连续性与a的取值有关,故选(D).
(9) 【答案】C
【详解】由于是选择题,可以用图形法解决,也可用分析法讨论.
1?1?方法1:由于是选择题,可以用图形法解决, 令?(x)?x(x?1),则?(x)??x???,
2?4?2