ºÃÎĵµ - רҵÎÄÊéд×÷·¶ÎÄ·þÎñ×ÊÁÏ·ÖÏíÍøÕ¾

Õ㽭ʡרÉý±¾¸ßµÈÊýѧÊÔ¾íºÍ´ð°¸.doc

ÓÉ ÌìÏ ·ÖÏí ʱ¼ä£º ¼ÓÈëÊÕ²Ø ÎÒҪͶ¸å µãÔÞ

Õã½­Ê¡ 2015 ÄêÑ¡°ÎÓÅÐã¸ßÖ°¸ßר±ÏÒµÉú½øÈë±¾¿Æѧϰͳһ¿¼ÊÔ

¸ßµÈÊýѧ

Ç뿼Éú°´¹æ¶¨Óñʽ«ËùÓÐÊÔÌâµÄ´ð°¸Í¿¡¢Ð´ÔÚ´ðÌâÖ½ÉÏ¡£

Ñ¡ÔñÌⲿ·Ö

×¢ÒâÊÂÏî :

1. ´ðÌâÇ° , ¿¼ÉúÎñ±Ø½«×Ô¼ºµÄÐÕÃû¡¢×¼¿¼Ö¤ºÅÓúÚÉ«×Ö¼£µÄÇ©×ֱʻò¸Ö±ÊÌîдÔÚ´ðÌâÖ½¹æ¶¨µÄλÖÃÉÏ¡£

2. ÿСÌâÑ¡³ö´ð°¸ºó£¬Óà 2B Ǧ±Ê°Ñ´ðÌâÖ½É϶ÔÓ¦ÌâÄ¿µÄ´ð°¸±êºÅÍ¿ºÚ£¬ÈçÐè¸Ä¶¯£¬ÓÃÏðƤ²Á¸É¾»ºó£¬ÔÙÑ¡Í¿ÆäËü´ð°¸±êºÅ¡£²»ÄÜ´ðÔÚÊÔÌâ¾íÉÏ¡£

Ò»¡¢Ñ¡ÔñÌâ : ±¾´óÌâ¹² 5 СÌâ , ÿСÌâ 4 ·Ö, ¹² 20 ·Ö¡£ÔÚÿСÌâ¸ø³öµÄËĸöÑ¡ÏîÖУ¬

Ö»ÓÐÒ»ÏîÊÇ·ûºÏÌâÄ¿ÒªÇóµÄ¡£ 1. µ± x

x0 ʱ£¬ f(x) ÊÇ g(x) µÄ¸ß½×ÎÞÇîС£¬Ôòµ± x x0 ʱ£¬ f(x)-g(x) ÊÇ g(x) µÄ

A£®µÈ¼ÛÎÞÇîС B£®Í¬½×ÎÞÇîС C£®¸ß½×ÎÞÇîС D£®µÍ½×ÎÞÇîС 2. Éè f(x)ÔÚ x=a ´¦¿Éµ¼£¬Ôò lim

x 0

f ( a x) f a x

x

µÈÓÚ

A.f¡¯(a)B.2f¡¯(a)C.0D.f¡¯(2a)

ÇÒ CΪÈÎÒâ³£Êý£¬

3. Éè¿Éµ¼º¯Êý F(x) Âú×ã F¡¯(x)=f(x), Ôò A.

F' (x)dx f (x) CB. f (x)dx F(x)C

C. F(x)dx F(x)

CD. f ' (x)dx F(x)

x - z

ÓëC

1

x 1 y 5 z 3

1

4. ÉèÖ±Ïß L1£º 1 A. B.

- 2 y 2z

L2£º3£¬Ôò LÓë LµÄ¼Ð½ÇÊÇ

1

2

C. D.

4

3

2

6

5 ÔÚÏÂÁм¶ÊýÖУ¬·¢É¢µÄÊÇ

A. n

( 1)n 1 1

1 1

ln( n 1) n 1 3 1

B.n

n1 n 1) (

C. n

1

3

n

D.

n n 1 3n 1

·ÇÑ¡ÔñÌⲿ·Ö

×¢ÒâÊÂÏî :

1. ÓúÚÉ«×Ö¼£µÄÇ©×ֱʻò¸Ö±Ê½«´ð°¸Ð´ÔÚ´ðÌâÖ½ÉÏ£¬²»ÄÜ´ðÔÚÊÔÌâ¾íÉÏ¡£

2. ÔÚ´ðÌâÖ½ÉÏ×÷ͼ£¬¿ÉÏÈʹÓà 2BǦ±Ê£¬È·¶¨ºó±ØÐëʹÓúÚÉ«×Ö¼£µÄÇ©×ֱʻò¸Ö±ÊÃèºÚ¡£

¶þ¡¢Ìî¿ÕÌâ : ±¾´óÌâ¹² 10 СÌ⣬ÿСÌâ 4 ·Ö£¬¹² 40 ·Ö¡£

6. ÊýÁм«ÏÞ lim n ln ( n

1) ln n

n

Èô lim x2

1

£¬Ôò ºÍ µÄֵΪ

ax b

2

a

b

7. x x 1

8. º¯Êý F( x )

x

1

1

1 dt ( x 0)µÄµ¥µ÷¼õÇø¼äÊÇ

t

2

x 2

x

9. É躯Êý f( x )

x

, 2

x 0ÔÚ x

0´¦Á¬Ðø£¬Ôò±ØÓÐ a

a, x

0

10. Éè

y

ln £¨1

2 -x £©£¬Ôò dy

11 Èôf ' (x )

x , ÇÒf( 2)

1, Ôòf( x)

1

dx

12.

x

1

e

ÒÑÖª¼¶Êý

1

2

1

2µÄºÍ2

£¬Ôò¼¶Êý Ϊ 13. n 1

n

6

n 1£¨2n - 1£©

14. º¯Êý lnx ÔÚ x=1 ´¦µÄÃݼ¶ÊýÕ¹¿ªÊ½Îª

Èý¡¢¼ÆËãÌ⣺±¾Ìâ¹²ÓÐ 8 СÌ⣬ÆäÖÐ 16-19 СÌâÿСÌâ 7 ·Ö£¬ 20-23 СÌâÿСÌâ

·Ö£¬¹² 60 ·Ö¡£¼ÆËãÌâ±ØÐëд³ö±ØÒªµÄ¼ÆËã¹ý³Ì£¬Ö»Ð´´ð°¸µÄ²»¸ø·Ö¡£

16. Éè f ( x

1

x 2

( x0)£¬Çó f( x )

8

)

4

x x

1

17.

Çó¼«ÏÞ lim

x

2

x£¨1 - cos

1

£© x

2

d2 y ) £¬ÆäÖÐ f¾ßÓжþ½×µ¼Êý ,Çó dx 2 18. Éè y cos f ( x

20. ÌÖÂÛ·½³Ì lnx=ax £¨a>0£©Óм¸¸öʵ¸ù 21. Çó

1 x x

0

x2 x

2

3

dx

22.

¼ÆËã 2 sinx - cosx dx

2

2

23. ÇóÇúÏߣ¨ x - b£© y a£¨ ba 0)ËùΧ³ÉµÄƽÃæͼÐÎÈÆ y Öá ÐýתһÖÜËùµÃµÄÐýתÌåÌå»ý

ËÄ¡¢×ÛºÏÌ⣺±¾´óÌâ¹² 3 СÌ⣬ÿСÌâ 10 ·Ö£¬¹² 30 ·Ö¡£

ÒÑÖªº¯Êý y

24. (1). º¯ÊýµÄµ¥µ÷Çø¼ä¼°¼«Öµ ;

(2). º¯ÊýͼÐεݼ͹Çø¼ä¼°¹Õµã£»

(3). º¯ÊýͼÐεĽ¥½üÏß¡£

£¬Çó £¨x - 1£©

2

x 3 ÒÑÖª f( x ) 2 0 2n 2 2n

x,0 2 -

x

1

£¬¼ÆËã

25.

x,1

x2

(1).

S0 S

f £¨x£© e- x dx

(2).

0

f £¨x - 2n£©e- xdx

26.

Éèf ( x ) sin x

x

( x

0

t )f (t )dt ΪÁ¬Ðøº¯Êý£¬ÊÔÇó f( x )

Õ㽭ʡרÉý±¾¸ßµÈÊýѧÊÔ¾íºÍ´ð°¸.doc

Õã½­Ê¡2015ÄêÑ¡°ÎÓÅÐã¸ßÖ°¸ßר±ÏÒµÉú½øÈë±¾¿Æѧϰͳһ¿¼ÊԸߵÈÊýѧÇ뿼Éú°´¹æ¶¨Óñʽ«ËùÓÐÊÔÌâµÄ´ð°¸Í¿¡¢Ð´ÔÚ´ðÌâÖ½ÉÏ¡£Ñ¡ÔñÌⲿ·Ö×¢ÒâÊÂÏî:1.´ðÌâÇ°,¿¼ÉúÎñ±Ø½«×Ô¼ºµÄÐÕÃû¡¢×¼¿¼Ö¤ºÅÓúÚÉ«×Ö¼£µÄÇ©×ֱʻò¸Ö±ÊÌîдÔÚ´ðÌâÖ½¹æ¶¨µÄλÖÃÉÏ¡£
ÍƼö¶È£º
µã»÷ÏÂÔØÎĵµÎĵµÎªdoc¸ñʽ
4q89t7ft2h57eja0pqkz5136q5t3t4006wp
ÁìÈ¡¸£Àû

΢ÐÅɨÂëÁìÈ¡¸£Àû

΢ÐÅɨÂë·ÖÏí