Õã½Ê¡ 2015 ÄêÑ¡°ÎÓÅÐã¸ßÖ°¸ßר±ÏÒµÉú½øÈë±¾¿Æѧϰͳһ¿¼ÊÔ
¸ßµÈÊýѧ
Ç뿼Éú°´¹æ¶¨Óñʽ«ËùÓÐÊÔÌâµÄ´ð°¸Í¿¡¢Ð´ÔÚ´ðÌâÖ½ÉÏ¡£
Ñ¡ÔñÌⲿ·Ö
×¢ÒâÊÂÏî :
1. ´ðÌâÇ° , ¿¼ÉúÎñ±Ø½«×Ô¼ºµÄÐÕÃû¡¢×¼¿¼Ö¤ºÅÓúÚÉ«×Ö¼£µÄÇ©×ֱʻò¸Ö±ÊÌîдÔÚ´ðÌâÖ½¹æ¶¨µÄλÖÃÉÏ¡£
2. ÿСÌâÑ¡³ö´ð°¸ºó£¬Óà 2B Ǧ±Ê°Ñ´ðÌâÖ½É϶ÔÓ¦ÌâÄ¿µÄ´ð°¸±êºÅÍ¿ºÚ£¬ÈçÐè¸Ä¶¯£¬ÓÃÏðƤ²Á¸É¾»ºó£¬ÔÙÑ¡Í¿ÆäËü´ð°¸±êºÅ¡£²»ÄÜ´ðÔÚÊÔÌâ¾íÉÏ¡£
Ò»¡¢Ñ¡ÔñÌâ : ±¾´óÌâ¹² 5 СÌâ , ÿСÌâ 4 ·Ö, ¹² 20 ·Ö¡£ÔÚÿСÌâ¸ø³öµÄËĸöÑ¡ÏîÖУ¬
Ö»ÓÐÒ»ÏîÊÇ·ûºÏÌâÄ¿ÒªÇóµÄ¡£ 1. µ± x
x0 ʱ£¬ f(x) ÊÇ g(x) µÄ¸ß½×ÎÞÇîС£¬Ôòµ± x x0 ʱ£¬ f(x)-g(x) ÊÇ g(x) µÄ
A£®µÈ¼ÛÎÞÇîС B£®Í¬½×ÎÞÇîС C£®¸ß½×ÎÞÇîС D£®µÍ½×ÎÞÇîС 2. Éè f(x)ÔÚ x=a ´¦¿Éµ¼£¬Ôò lim
x 0
f ( a x) f a x
x
µÈÓÚ
A.f¡¯(a)B.2f¡¯(a)C.0D.f¡¯(2a)
ÇÒ CΪÈÎÒâ³£Êý£¬
3. Éè¿Éµ¼º¯Êý F(x) Âú×ã F¡¯(x)=f(x), Ôò A.
F' (x)dx f (x) CB. f (x)dx F(x)C
C. F(x)dx F(x)
CD. f ' (x)dx F(x)
x - z
ÓëC
1
x 1 y 5 z 3
1
4. ÉèÖ±Ïß L1£º 1 A. B.
- 2 y 2z
L2£º3£¬Ôò LÓë LµÄ¼Ð½ÇÊÇ
1
2
C. D.
4
3
2
6
5 ÔÚÏÂÁм¶ÊýÖУ¬·¢É¢µÄÊÇ
A. n
( 1)n 1 1
1 1
ln( n 1) n 1 3 1
B.n
n1 n 1) (
C. n
1
3
n
D.
n n 1 3n 1
·ÇÑ¡ÔñÌⲿ·Ö
×¢ÒâÊÂÏî :
1. ÓúÚÉ«×Ö¼£µÄÇ©×ֱʻò¸Ö±Ê½«´ð°¸Ð´ÔÚ´ðÌâÖ½ÉÏ£¬²»ÄÜ´ðÔÚÊÔÌâ¾íÉÏ¡£
2. ÔÚ´ðÌâÖ½ÉÏ×÷ͼ£¬¿ÉÏÈʹÓà 2BǦ±Ê£¬È·¶¨ºó±ØÐëʹÓúÚÉ«×Ö¼£µÄÇ©×ֱʻò¸Ö±ÊÃèºÚ¡£
¶þ¡¢Ìî¿ÕÌâ : ±¾´óÌâ¹² 10 СÌ⣬ÿСÌâ 4 ·Ö£¬¹² 40 ·Ö¡£
6. ÊýÁм«ÏÞ lim n ln ( n
1) ln n
n
Èô lim x2
1
£¬Ôò ºÍ µÄֵΪ
ax b
2
a
b
7. x x 1
8. º¯Êý F( x )
x
1
1
1 dt ( x 0)µÄµ¥µ÷¼õÇø¼äÊÇ
t
2
x 2
x
9. É躯Êý f( x )
x
, 2
x 0ÔÚ x
0´¦Á¬Ðø£¬Ôò±ØÓÐ a
a, x
0
10. Éè
y
ln £¨1
2 -x £©£¬Ôò dy
11 Èôf ' (x )
x , ÇÒf( 2)
1, Ôòf( x)
1
dx
12.
x
1
e
ÒÑÖª¼¶Êý
1
2
1
2µÄºÍ2
£¬Ôò¼¶Êý Ϊ 13. n 1
n
6
n 1£¨2n - 1£©
14. º¯Êý lnx ÔÚ x=1 ´¦µÄÃݼ¶ÊýÕ¹¿ªÊ½Îª
Èý¡¢¼ÆËãÌ⣺±¾Ìâ¹²ÓÐ 8 СÌ⣬ÆäÖÐ 16-19 СÌâÿСÌâ 7 ·Ö£¬ 20-23 СÌâÿСÌâ
·Ö£¬¹² 60 ·Ö¡£¼ÆËãÌâ±ØÐëд³ö±ØÒªµÄ¼ÆËã¹ý³Ì£¬Ö»Ð´´ð°¸µÄ²»¸ø·Ö¡£
16. Éè f ( x
1
x 2
( x0)£¬Çó f( x )
8
)
4
x x
1
17.
Çó¼«ÏÞ lim
x
2
x£¨1 - cos
1
£© x
2
d2 y ) £¬ÆäÖÐ f¾ßÓжþ½×µ¼Êý ,Çó dx 2 18. Éè y cos f ( x
20. ÌÖÂÛ·½³Ì lnx=ax £¨a>0£©Óм¸¸öʵ¸ù 21. Çó
1 x x
0
x2 x
2
3
dx
22.
¼ÆËã 2 sinx - cosx dx
2
2
23. ÇóÇúÏߣ¨ x - b£© y a£¨ ba 0)ËùΧ³ÉµÄƽÃæͼÐÎÈÆ y Öá ÐýתһÖÜËùµÃµÄÐýתÌåÌå»ý
ËÄ¡¢×ÛºÏÌ⣺±¾´óÌâ¹² 3 СÌ⣬ÿСÌâ 10 ·Ö£¬¹² 30 ·Ö¡£
ÒÑÖªº¯Êý y
24. (1). º¯ÊýµÄµ¥µ÷Çø¼ä¼°¼«Öµ ;
(2). º¯ÊýͼÐεݼ͹Çø¼ä¼°¹Õµã£»
(3). º¯ÊýͼÐεĽ¥½üÏß¡£
£¬Çó £¨x - 1£©
2
x 3 ÒÑÖª f( x ) 2 0 2n 2 2n
x,0 2 -
x
1
£¬¼ÆËã
25.
x,1
x2
(1).
S0 S
f £¨x£© e- x dx
(2).
0
f £¨x - 2n£©e- xdx
26.
Éèf ( x ) sin x
x
( x
0
t )f (t )dt ΪÁ¬Ðøº¯Êý£¬ÊÔÇó f( x )