好文档 - 专业文书写作范文服务资料分享网站

2016中考数学模拟试题含答案(精选5套)

天下 分享 时间: 加入收藏 我要投稿 点赞

点评: 本题考查了翻折变换的知识,解答本题的关键是熟练掌握翻折变换的性质:翻折前后对应边相等,另外要求同学们熟练掌握勾股定理的应用. 18.(3分)(2013?惠山区一模)图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+4,则图3中线段AB的长为 +1 .

考点: 剪纸问题;一元二次方程的应用;正方形的性质. 专题: 几何图形问题;压轴题. 分析: 根据题中信息可得图2、图3面积相等;图2可分割为一个正方形和四个小三角形;设原八2角形边长为a,则图2正方形边长为2a+a、面积为(2a+a),四个小三角形面积和为22a,解得a=1.AB就知道等于多少了. 2解答: 解:设原八角形边长为a,则图2正方形边长为2a+a、面积为(2a+a),四个小三角2形面积和为2a, 22列式得(2a+a)+2a=8+4,解得a=1,则AB=1+. 点评: 解此题的关键是抓住图3中的AB在图2中是哪两条线段组成的,再列出方程求出即可. 三、解答题:(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)

19.(10分)(1)计算:2+(2)化简:(1+

)÷

﹣1

cos30°+|﹣5|﹣(π﹣2013). .

0

考点: 分式的混合运算;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值. 专题: 计算题. 分析: (1)根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=+×+5﹣1,再进行二次根式的乘法运算,然后进行有理数的加减运算; (2)先把括号内通分和把除法化为乘法,然后把分子分解后约分即可. 解答: (1)解:原式=+×+5﹣1 =++5﹣1 =6; (2)原式=? =x. 点评: 本题考查了分式的混合运算:先把分式的分子或分母因式分解,再进行通分或约分,得到最

简分式或整式.也考查了零指数幂、负整数指数幂和特殊角的三角函数值. 20.(6分)解不等式组

,并将解集在数轴上表示.

考点: 解一元一次不等式组;在数轴上表示不等式的解集. 分析: 求出每个不等式的解集,找出不等式组的解集即可. 解答: 解: ∵由①得,x<2, 由②得,x≥﹣1, ∴不等式组的解集是:﹣1≤x<2, 在数轴上表示不等式组的解集为. 点评: 本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集的应用,关键是能根据不等式的解集找出不等式组的解集. 21.(8分)(2011?青岛)图1是某城市三月份1至8日的日最高气温随时间变化的折线统计图,小刚根据图1将数据统计整理后制成了图2. 根据图中信息,解答下列问题: (1)将图2补充完整;

(2)这8天的日最高气温的中位数是 2.5 ℃; (3)计算这8天的日最高气温的平均数.

考点: 折线统计图;条形统计图;算术平均数;中位数. 分析: (1)从(1)可看出3℃的有3天. (2)中位数是数据从小到大排列在中间位置的数. (3)求加权平均数数,8天的温度和÷8就为所求. 解答: 解:(1)如图所示. (2)∵这8天的气温从高到低排列为:4,3,3,3,2,2,1,1 ∴中位数应该是第4个数和第5个数的平均数:(2+3)÷2=2.5. (3)(1×2+2×2+3×3+4×1)÷8=2.375℃.

8天气温的平均数是2.375. 点评: 本题考查了折线统计图,条形统计图的特点,以及中位数的概念和加权平均数的知识点. 22.(6分)(2012?苏州)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.

(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是

(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是

(用树状图或列表法求解).

考点: 列表法与树状图法;等腰三角形的判定;平行四边形的判定. 分析: (1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,即可得出答案; (2)利用树状图得出从A、D、E、F四个点中先后任意取两个不同的点,一共有12种可能,进而得出以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,即可求出概率. 解答: 解:(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形, 故P(所画三角形是等腰三角形)=; (2)用“树状图”或利用表格列出所有可能的结果: ∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,

∴所画的四边形是平行四边形的概率P=故答案为:(1),(2). =. 点评: 此题主要考查了利用树状图求概率,根据已知正确列举出所有结果,进而得出概率是解题关键. 23.(8分)在一次数学活动课上,数学老师在同一平面内将一副直角三角板如图位置摆放,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.

考点: 解直角三角形. 分析: 过点B作BM⊥FD于点M,解直角三角形求出BC,在△BMC值解直角三角形求出CM,BM,推出BM=DM,即可求出答案. 解答: 解: 过点B作BM⊥FD于点M, 在△ACB中,∠ACB=90°,∠A=60°,AC=10, ∴∠ABC=30°,BC=AC tan60°=10, ∵AB∥CF,∴∠BCM=∠ABC=30°. ∴BM=BC?sin30°=10CM=BC?cos30°=10××=5, =15, 在△EFD中,∠F=90°,∠E=45°, ∴∠EDF=45°, ∴MD=BM=5, ∴CD=CM﹣MD=15﹣5. 点评: 本题考查了解直角三角形的应用,关键是能通过解直角三角形求出线段CM、MD的长. 24.(10分)(2011?莆田)如图,将一矩形OABC放在直角坐标系中,O为坐标原点.点A在y轴正半轴上.点E是边AB上的一个动点(不与点A、B重合),过点E的反比例函数

的图象与边BC交于点F.

(1)若△OAE、△OCF的面积分别为S1、S2.且S1+S2=2,求k的值;

(2)若OA=2.0C=4.问当点E运动到什么位置时.四边形OAEF的面积最大.其最大值为多少?

考点: 反比例函数综合题. 专题: 综合题. 分析: (1)设E(x1,),F(x2,),x1>0,x2>0,根据三角形的面积公式得到S1=S2=k,利用S1+S2=2即可求出k; (2)设,,利用S四边形OAEF=S矩形OABC﹣S△BEF﹣S△OCF=﹣+5,根据二次函数的最值问题即可得到当k=4时,四边形OAEF的面积有最大值,S四边形OAEF=5,此时AE=2. 解答: 解:(1)∵点E、F在函数y=(x>0)的图象上, ∴设E(x1,∴S1=∵S1+S2=2, ∴=2, ),F(x2,,S2=),x1>0,x2>0, , ∴k=2; (2)∵四边形OABC为矩形,OA=2,OC=4, 设,, ∴BE=4﹣,BF=2﹣, ∴S△BEF=∵S△OCF=﹣k+4, ,S矩形OABC=2×4=8, +4, ∴S四边形OAEF=S矩形OABC﹣S△BEF﹣S△OCF==﹣+5, ∴当k=4时,S四边形OAEF=5,

2016中考数学模拟试题含答案(精选5套)

点评:本题考查了翻折变换的知识,解答本题的关键是熟练掌握翻折变换的性质:翻折前后对应边相等,另外要求同学们熟练掌握勾股定理的应用.18.(3分)(2013?惠山区一模)图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+4,则图3中线段AB的长为+1.
推荐度:
点击下载文档文档为doc格式
4otb09x9tn4n7xy5eb7i
领取福利

微信扫码领取福利

微信扫码分享