(2)根据(1)的结论,可得CE=AB,结合等腰梯形的性质,可写出等腰三角形. 解答: 解(1)∵AD∥BC, ∴∠ADB=∠EBC, ∵∠BDC=∠BCD, ∴BD=BC, 在△ADB和△EBC中, ∴△ADB≌△EBC(SAS).(2)由(1)可得△BCD是等腰三角形; ∵△ADB≌△EBC, ∴CE=AB, 又∵AB=CD, ∴CE=CD, ∴△CDE是等腰三角形. 点评: 本题考查了等腰三角形的性质及判定,等腰梯形的性质,解答本题的关键是掌握全等三角形的判定定理及等腰梯形的性质,难度一般. 18.(9分)(2013?鹤壁二模)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求: (1)坡顶A到地面PQ的距离;
(2)古塔BC的高度(结果精确到1米).
(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
考点: 解直角三角形的应用-仰角俯角问题. 分析: (1)先过点A作AH⊥PO,根据斜坡AP的坡度为1:2.4,得出=,设AH=5k,则PH=12k,AP=13k,求出k的值即可. (2)先延长BC交PO于点D,根据BC⊥AC,AC∥PO,得出BD⊥PO,四边形AHDC是矩形,再根据∠BPD=45°,得出PD=BD,然后设BC=x,得出AC=DH=x﹣14,最后根据在Rt△ABC中,tan76°=,列出方程,求出x的值即可. 解答: 解:(1)过点A作AH⊥PO,垂足为点H, ∵斜坡AP的坡度为1:2.4, ∴=,
设AH=5k,则PH=12k,由勾股定理,得AP=13k, ∴13k=26, 解得k=2, ∴AH=10, 答:坡顶A到地面PQ的距离为10米. (2)延长BC交PO于点D, ∵BC⊥AC,AC∥PO, ∴BD⊥PO, ∴四边形AHDC是矩形,CD=AH=10,AC=DH, ∵∠BPD=45°, ∴PD=BD, 设BC=x,则x+10=24+DH, ∴AC=DH=x﹣14, 在Rt△ABC中,tan76°=,即≈4.01. 解得x≈19. 答:古塔BC的高度约为19米. 点评: 此题考查了解直角三角形,用到的知识点是勾股定理、锐角三角函数、坡角与坡角等,关键是做出辅助线,构造直角三角形. 19.(9分)(2009?黔南州)“农民也可以报销医疗费了!”这是某市推行新型农村医疗合作的成果.村民只要每人每年交10元钱,就可以加入合作医疗,每年先由自己支付医疗费,年终时可得到按一定比例返回的返回款.这一举措极大地增强了农民抵御大病风险的能力.小华与同学随机调查了他们乡的一些农民,根据收集到的数据绘制了以下的统计图. 根据以上信息,解答以下问题:
(1)本次调查了多少村民,被调查的村民中,有多少人参加合作医疗得到了返回款;
(2)该乡若有10 000村民,请你估计有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到9 680人,假设这两年的年增长率相同,求这个年增长
率.
考点: 扇形统计图;一元二次方程的应用;用样本估计总体;条形统计图. 专题: 阅读型;图表型. 分析: (1)根据样本容量为各组频数之和,可得共有240+60=300(人);其中有2.5%即6人得到了返回款; (2)用样本估计总体即可得出答案. 解答: 解:(1)调查的村民数=240+60=300人, 参加合作医疗得到了返回款的人数=240×2.5%=6人;(2)∵参加医疗合作的百分率为=80%, ∴估计该乡参加合作医疗的村民有10000×80%=8000人, 2设年增长率为x,由题意知8000×(1+x)=9680, 解得:x1=0.1,x2=﹣2.1(舍去), 即年增长率为10%. 答:共调查了300人,得到返回款的村民有6人,估计有8000人参加了合作医疗,年增长率为10%. 点评: 本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小. 20.(9分)(2012?六盘水)假期,六盘水市教育局组织部分教师分别到A、B、C、D四个地方进行新课程培训,教育局按定额购买了前往四地的车票.如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:
(1)若去C地的车票占全部车票的30%,则去C地的车票数量是 30 张,补全统计图.
(2)若教育局采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么余老师抽到去B地的概率是多少?
(3)若有一张去A地的车票,张老师和李老师都想要,决定采取旋转转盘的方式来确定.其中甲转盘被分成四等份且标有数字1、2、3、4,乙转盘分成三等份且标有数字7、8、9,如图2所示.具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,票给李老师,否则票给张老师(指针指在线上重转).试用“列表法”或“树状图”的方法分析这个规定对双方是否公平. 考点: 游戏公平性;扇形统计图;条形统计图;概率公式;列表法与树状图法. 分析: (1)根据去A、B、D的车票总数除以所占的百分比求出总数,再减去去A、B、D的车票总数即可; (2)用去B地的车票数除以总的车票数即可; (3)根据题意用列表法分别求出当指针指向的两个数字之和是偶数时的概率,即可求出这个规定对
双方是否公平. 解答: 解:(1)根据题意得: 总的车票数是:(20+40+10)÷(1﹣30%)=100, 则去C地的车票数量是100﹣70=30; 故答案为:30.(2)余老师抽到去B地的概率是=;(3)根据题意列表如下: 因为两个数字之和是偶数时的概率是所以票给李老师的概率是, 所以这个规定对双方公平. =, 点评: 本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平. 21.(10分)(2010?眉山)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%. (1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾? (2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?
(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗? 考点: 一元一次不等式的应用;一次函数的应用. 专题: 压轴题. 分析: (1)0.5×甲种鱼的尾数+0.8×乙种鱼的尾数=3600; (2)0.5×甲种鱼的尾数+0.8×乙种鱼的尾数≤4200; (3)关系式为:甲种鱼的尾数×0.9+乙种鱼的尾数×95%≥6000×93%. 解答: 解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗(6000﹣x)尾. 由题意得:0.5x+0.8(6000﹣x)=3600, 解这个方程,得:x=4000, ∴6000﹣x=2000, 答:甲种鱼苗买4000尾,乙种鱼苗买2000尾;(2)由题意得:0.5x+0.8(6000﹣x)≤4200,
解这个不等式,得:x≥2000, 即购买甲种鱼苗应不少于2000尾,乙不超过4000尾;(3)设购买鱼苗的总费用为y,甲种鱼苗买了x尾. 则y=0.5x+0.8(6000﹣x)=﹣0.3x+4800, 由题意,有x+(6000﹣x)≥×6000, 解得:x≤2400, 在y=﹣0.3x+4800中, ∵﹣0.3<0,∴y随x的增大而减少, ∴当x=2400时,y最小=4080. 答:购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低. 点评: 根据钱数和成活率找到相应的关系式是解决本题的关键,注意不低于是大于或等于;不超过是小于或等于. 22.(10分)(2013?鹤壁二模)如图,在梯形ABCD中,AD∥BC,∠ABC=90°,DG⊥BC于G,BH⊥DC于H,CH=DH,点E在AB上,点F在BC上,并且EF∥DC. (1)若AD=3,CG=2,求CD; (2)若CF=AD+BF,求证:EF=CD.
考点: 直角梯形;勾股定理;矩形的性质;相似三角形的判定与性质. 专题: 几何综合题;压轴题. 分析: (1)由AD∥BC,∠ABC=90°,DG⊥BC得到四边形ABGD为矩形,利用矩形的性质有AD=BG=3,AB=DG,而BH⊥DC,CH=DH,根据等腰三角形的判定得到△BDC为等腰三角形,即有BD=BG+GC=3+2=5,先在Rt△ABD中求出AB,然后在Rt△DGC中求出DC; (2)由CF=AD+BF,AD=BG,经过线段代换易得GC=2BF,再由EF∥DC得到∠BFE=∠GCD,根据三角形相似的判定易得Rt△BEF∽Rt△GDC,利用相似比即可得到结论. 解答: (1)解:连BD,如图, ∵在梯形ABCD中,AD∥BC,∠ABC=90°,DG⊥BC, ∴四边形ABGD为矩形, ∴AD=BG=3,AB=DG, 又∵BH⊥DC,CH=DH, ∴△BDC为等腰三角形, ∴BD=BG+GC=3+2=5, 在Rt△ABD中,AB===4,