好文档 - 专业文书写作范文服务资料分享网站

小学数学奥数方法讲义40讲(一) 

天下 分享 时间: 加入收藏 我要投稿 点赞

第二讲 尝试法

解应用题时,按照自己认为可能的想法,通过尝试,探索规律,从而获得解题方法,叫做尝试法。尝试法也叫“尝试探索法”。

一般来说,在尝试时可以提出假设、猜想,无论是假设或猜想,都要目的明确,尽可能恰当、合理,都要知道在假设、猜想和尝试过程中得到的结果是什么,从而减少尝试的次数,提高解题的效率。

例1 把数字3、4、6、7填在图2-1的空格里,使图中横行、坚列三个数相加都等于14。(适于一年级程度)

解:七八岁的儿童,观察、总结、发现规律的能力薄弱,做这种填空练习,一般都感到困难。可先启发他们认识解此题的关键在于试填中间的一格。中间一格的数确定后,下面一格的数便可由竖列三个数之和等于14来确定,剩下的两个数自然应填入左右两格了。

中间一格应填什么数呢?

先看一个日常生活中的例子。如果我们要从一种月刊全年的合订本中找到第六期的第23页,我们一定要从合订本大约一半的地方打开。要是翻到第五期,就要再往后翻;要是翻到第七期、第八期,就要往前翻。找到第六期后,再往接近第23页的地方翻,??

这样反复试探几次,步步逼近,最后就能找到这一页。 这就是在用“尝试法”解决问题。

本题的试数范围是3、4、6、7四个数,可由小至大,或由大至小依次填在中间的格中,按“横行、竖列三个数相加都得14”的要求来逐个尝试。

如果中间的格中填3,则竖列下面的一格应填多少呢?因为14-5-3=6,所以竖列下面的一格中应填6(图2-2)。

下面就要把剩下的4、7,分别填入横行左右的两个格中(图2-3)。把横行格中的4、3、7三个数加起来,得14,合乎题目要求。

如果中间一格填4、或填6、7都不合乎题目的要求。 所以本题的答案是图2-3或图2-4。

例2 把1、2、3??11各数填在图2-5的方格里,使每一横行、每一竖行的数相加都等于18。(教科书第四册第57页的思考题,适于二年级程度)

解:图2-5中有11个格,正好每一格填写一个数。

图2-6中写有A、B、C的三个格中的三个数,既要参加横向的运算,又要参加纵向的运算,就是说这三个数都要被用两次。因此,确定A、B、C这三个数是解此题的关键。

因为1~11之中中间的三个数是5、6、7,所以,我们以A、B、C分别为5、 6、7开始尝试(图2-7)。

以6为中心尝试,看6上、下两个格中应填什么数。 因为18-6=12,所以6上、下两格中数字的和应是12。

考虑6已是1~11之中中间的数,那么6上、下两格中的数应是1~11之中两头的数。再考虑6上面的数还要与5相加,6下面的数还要与7相加,5比7小,题中要求是三个数相加都等于18,所以在6上面的格中填11,在6下面的格中填1(图2-8)。

6+11+1=18

看图2-8。6上面的数是11,11左邻的数是5,18-11-5=2,所以5左邻的数是2(图2-9)。

再看图2-8。6下面的数是1,1右邻的数是7,18-1-7=10,所以7右邻的数是10(图2-9)。

现在1~11之中只剩下3、4、8、9这四个数,图2-9中也只剩下四个空格。在5的上、下,在7的上、下都应填什么数呢?

因为18-5=13,所以5上、下两格中数字的和应是13,3、4、8、9这四个数中,只有4+9=13,所以在5的上、下两格中应填9与4(图2-10)。

看图2-10。因为6左邻的数是4,18-4-6=8,所以6右邻的数是8。 因为18-7-8=3,并且1-11的数中,只剩下3没有填上,所以在7下面的格中应填上3。

图2-10是填完数字的图形。

*例3 在9只规格相同的手镯中混有1只较重的假手镯。在一架没有砝码的天平上,最多只能称两次,你能把假手镯找出来吗?(适于三年级程度)

解:先把9只手镯分成A、B、C三组,每组3只。

①把A、B两组放在天平左右两边的秤盘上,如果平衡,则假的1只在C组里;若不平衡,则哪组较重,假的就在哪组里。

②再把有假手镯的那组中的两只分别放在天平的左右秤盘上。如果平衡,余下的1只是假的;若不平衡,较重的那只是假的。

*例4 在下面的15个8之间的任何位置上,添上+、-、×、÷符号,使得下面的算式成立。(适于三年级程度)8 8 8 8 8 8 8 8 8 8 8 8 8 8 8=1986

解:先找一个接近1986的数,如:8888÷8+888=1999。

1999比1986大13。往下要用剩下的7个8经过怎样的运算得出一个等于13的算式呢?88÷8=11,11与13接近,只差2。

往下就要看用剩下的4个8经过怎样的运算等于2。8÷8+8÷8=2。 把上面的思路组合在一起,得到下面的算式: 8888÷8+888-88÷8-8÷8-8÷8=1986

例5 三个连续自然数的积是120,求这三个数。(适于四年级程度) 解:假设这三个数是2、3、4,则:

2×3×4=24

24<120,这三个数不是2、3、4; 假设这三个数是3、4、5,则:

3×4×5=60

60<120,这三个数不是3、4、5; 假设这三个数是4、5、6,则:

4×5×6=120

4、5、6的积正好是120,这三个数是4、5、6。例6 在下面式子里的适当位置上加上括号,使它们的得数分别是47、75、23、35。(适于四年级程度)

(1)7×9+12÷3-2=47 (2)7×9+12÷3-2=75 (3)7×9+12÷3-2=23 (4)7×9+12÷3-2=35

解:本题按原式的计算顺序是先做第二级运算,再做第一级运算,即先做乘除法而后做加减法,结果是:

7×9+12÷3-2 =63+4-2 =65

“加上括号”的目的在于改变原来的计算顺序。由于此题加中括号还是加小括号均未限制,因此解本题的关键在于加写括号的位置。可以从加写一个小括号想起,然后再考虑加写中括号。如:

(1)7×7=49,再减2就是47。这里的第一个数7是原算式中的7,要减去的2是原算式等号前的数,所以下面应考虑能否把9+12÷3通过加括号后改成得7的算式。经过加括号,(9+12)÷3=7,因此:

7×[(9+12)÷3]-2=47

因为一个数乘以两个数的商,可以用这个数乘以被除数再除以除数,所以本题也可以写成:

7×(9+12)÷3-2=47

(2)7×11=77,再减2就得75。这里的7是原算式中的第一个数,要减去的2是等号前面的数。下面要看9+12÷3能不能改写成得11的算式。经尝试9+12÷3不能改写成得11的算式,所以不能沿用上一道题的解法。7×9+12得75,这里的7、9、12就是原式中的前三个数,所以只要把3-2用小括号括起来,使7×9+12之和除以1,问题就可解决。由此得到:

(7×9+12)÷(3-2)=75

因为(3-2)的差是1,所以根据“两个数的和除以一个数,可以先把两个加数分别除以这个数,然后把两个商相加”这一运算规则,上面的算式又可以写成:

7×9+12÷(3-2)=75

在上面的这个算式中,本应在7×9的后面写上“÷(3-2)”,因为任何数除以1等于这个数本身,为了适应题目的要求,不在7×9的后写出“÷(3-2)”。 (3)25-2=23,这个算式中,只有2是原算式等号前的数,只要把7×9+12÷3改写成得25的算式,问题就可解决。又因为7×9+12=75,75÷3=25,所以只要把7×9+12用小括号括起来,就得到题中所求了。

(7×9+12)÷3-2=23

小学数学奥数方法讲义40讲(一) 

第二讲尝试法解应用题时,按照自己认为可能的想法,通过尝试,探索规律,从而获得解题方法,叫做尝试法。尝试法也叫“尝试探索法”。一般来说,在尝试时可以提出假设、猜想,无论是假设或猜想,都要目的明确,尽可能恰当、合理,都要知道在假设、猜想和尝试过程中得到的结果是什么,从而减少尝试的次数,提高解题的效率。例1把数字3、4、6、7填在图2-1的空
推荐度:
点击下载文档文档为doc格式
4oq7j35blu8ojis8frdd
领取福利

微信扫码领取福利

微信扫码分享