学习必备 欢迎下载
全国中考数学压轴题精选精析(三)
25.(08江西南昌)24.如图,抛物线
?19?y1??ax2?ax?1经过点P??,?,且与抛物线y2?ax2?ax?1相交于A,B两点.
?28?(1)求a值;
2(2)设y1??ax?ax?1与x轴分别交于M,N两点(点M在点N的左边),
y2?ax2?ax?1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四
点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且
xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D两点,试问当x为何值时,线段CD有最大值?其最大值为多少?
2(08江西南昌24题解析)24.解:(1)点P??,?在抛物线y1??ax?ax?1上,
y P A O B x ?19??28?119············································································· 2分 ??a?a?1?, ·
4281解得a?. ···························································································· 3分
21121121(2)由(1)知a?,?抛物线y1??x?x?1,y2?x?x?1. ······ 5分
22222121y 当?x?x?1?0时,解得x1??2,x2?1. 22P 点M在点N的左边,?xM??2,xN?1. ·········· 6分 当
A M E O N F B x 121x?x?1?0时,解得x3??1,x4?2. 22点E在点F的左边,?xE??1,xF?2. ················································ 7分
学习必备 欢迎下载
xM?xF?0,xN?xE?0,
?点M与点F对称,点N与点E对称. ······················································ 8分
1y (3)a??0.
2P ?抛物线y1开口向下,抛物线y2开口向上. ·············· 9分
根据题意,得CD?y1?y2
A C O Q D x B 11?1??1????x2?x?1???x2?x?1???x2?2. ········································ 11分
2222????xA≤x≤xB,?当x?0时,CD有最大值2. ········································ 12分
说明:第(2)问中,结论写成“M,N,或“MN?EF”E,F四点横坐标的代数和为0”
均得1分.
26.(08江西南昌)25.如图1,正方形ABCD和正三角形EFG的边长都为1,点E,F分别在线段AB,AD上滑动,设点G到CD的距离为x,到BC的距离为y,记?HEF为?(当点E,F分别与B,A重合时,记??0).
(1)当??0时(如图2所示),求x,y的值(结果保留根号);
(2)当?为何值时,点G落在对角形AC上?请说出你的理由,并求出此时x,y的值(结果保留根号);
(3)请你补充完成下表(精确到0.01):
? x 0 15 0.03 0.29 30 0 0.13 45 60 75 0.29 0.03 90 y (4)若将“点E,F分别在线段AB,AD上滑动”改为“点E,F分别在正方形ABCD边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G运动所形成的大致图形.
学习必备 欢迎下载
sin15?(参考数据:3≈1.732,
H A
E B F H D A(F) G C B(E) 图2
6?26?2≈0.259,sin75?≈0.966.) 44H A
H D A D
D
图1
G C B C 图3
B
图4
C
(08江西南昌25题解析)25.解:(1)过G作MN?AB于M交CD于N,GK?BC于K.
?ABG?60,BG?1, ?MG?31,BM?. ·········································································· 2分 2231,y?. ············································································· 3分 22?x?1?(2)当??45时,点G在对角线AC上,其理由是: ···································· 4分 过G作IQ∥BC交AB,CD于I,Q, 过G作JP∥AB交AD,BC于J,P.
H A(F) M B(E) D G N K C AC平分?BCD,?GP?GQ,?GI?GJ.
GE?GF,?Rt△GEI≌Rt△GFJ,??GEI??GFJ.
?GEF??GFE?60,??AEF??AFE. ?EAF?90,??AEF??AFE?45.
即??45时,点G落在对角线AC上. ······················································· 6分 (以下给出两种求x,y的解法) 方法一:
H A E I B F J D
?AEG?45?60?105,??GEI?75.
6?2在Rt△GEI中,GI?GEsin75?,
4G Q P C 学习必备 欢迎下载
?GQ?IQ?GI?1?6?2. ································································ 7分 4?x?y?1?6?2. ············································································ 8分 4方法二:当点G在对角线AC上时,有
13??2x?2, ··············································································· 7分 22解得x?1?6?2 46?2. ············································································ 8分 4?x?y?1?(3)
?
x
0
0.13
0.
03
15 0.0.
30 0 0.
45 0.03
0.
13
60 0.
29 0
75 0.
50 0.
900.0.
50 29 13 03 03 13
······················································· 10分 (4)由点G所得到的大致图形如图所示: H A
D
y
B
C ············································································· 12分
说明:1.第(2)问回答正确的得1分,证明正确的得2分,求出x,y的值各得1分; 2.第(3)问表格数据,每填对其中4空得1分;
3.第(4)问图形画得大致正确的得2分,只画出图形一部分的得1分. 27.(08山东滨州)23、(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
学习必备 欢迎下载
CDAB
(2)结论应用:①如图2,点M、N在反比例函数y=
k(k?0)的图象上,过点M作MEx⊥y轴,过点N作NF⊥x轴,垂足分别为E,F. 试应用(1)中得到的结论证明:MN∥EF.
yEMNOFx
②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与E是否
平行.
yMOxN (08山东滨州23题解析)23.(1)证明:分别过点C、D作CG?AB、DH?AB. 垂足为G、H,则?CGA??DHB?90.
0