(三) 立体几何初步
1.2019如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π
,则它的表面积是( ) 3
(A)17π (B)18π (C)20π (D)28π
2.2019如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是( )
A. B.
C. D.
3.2019平面?过正文体ABCD—A1B1C1D1的顶点A?//平面CB1D1,?I平面ABCD?m,
?I平面ABB1A1?n,则m,n所成角的正弦值为( )
(A)
3321(B)(C)(D) 23234.2019《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) (A)14斛(B)22斛(C)36斛(D)66斛
第 1 页
5.2019已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________. 6.2019如图,在四棱锥P-ABCD中,AB//CD,且?BAP??CDP?90o.
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,?APD?90o,且四棱锥P-ABCD的体积为
8,求该四棱锥的侧面积. 37.2019如图,在已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点E,连接PE并延长交AB于点G. (I)证明G是AB的中点;
(II)在答题卡第(18)题图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.
8.2019如图四边形ABCD为菱形,G为AC与BD交点,BE?平面ABCD, (I)证明:平面AEC?平面BED;
(II)若?ABC?120o,AE?EC,三棱锥E?ACD的体积为1.【答案】A 2.【答案】A 3.【答案】A 4.【答案】B 5.【答案】36?
因为平面SAC?平面SBC 所以OA?平面SBC 设OA?r
2所以r3?9?r?3,所以球的表面积为4?r?36?
6,求该三棱锥的侧面积. 3136.【答案】(1)证明见解析; (2)6?23.
由于AB∥CD,故AB?PD,从而AB?平面PAD. 又AB?平面PAB,所以平面PAB?平面PAD. (2)在平面PAD内作PE?AD,垂足为E.
第 2 页
由(1)知,AB?平面PAD,故AB?PE,可得PE?平面ABCD. 设AB?x,则由已知可得AD?2x,PE?2x. 2故四棱锥P?ABCD的体积VP?ABCD?由题设得
11AB?AD?PE?x3. 33138x?,故x?2. 33从而PA?PD?2,AD?BC?22,PB?PC?22.
1111可得四棱锥P?ABCD的侧面积为PA?PD?PA?AB?PD?DC?BC2sin60??6?23.
22227.【答案】(I)见解析(II)作图见解析,体积为
4 38.【答案】(I)见解析(II)3+25 考纲原文
(三) 立体几何初步
1.空间几何体
(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图, 能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.
(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.
(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不做严格要求). (5)了解球、棱柱、棱锥、台的表面积和体积的计算公式. 2.点、直线、平面之间的位置关系
(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理. ? 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内. ? 公理2:过不在同一条直线上的三点,有且只有一个平面.
? 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. ? 公理4:平行于同一条直线的两条直线互相平行.
? 定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定
第 3 页
理.
理解以下判定定理.
? 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行. ? 如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行. ? 如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. ? 如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直. 理解以下性质定理,并能够证明.
? 如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行. ? 如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行. ? 垂直于同一个平面的两条直线平行.
? 如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直. (3)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题. 对空间几何体的考查:
1.从考查题型来看,涉及本专题的题目一般以选择题、填空题的形式出现,考查空间几何体的三视图的识别,空间几何体的表面积、体积的计算.
2.从考查内容来看,主要考查由空间几何体的三视图确定其直观图,并求其表面积、体积.重点在于空间几何体的表面积、体积计算公式的正确使用,难点是如何根据三视图确定空间几何体的结构特征.
3.从考查热点来看,空间几何体的表面积、体积问题是高考命题的热点,以空间几何体的三视图为基准,识别该几何体,并计算其表面积、体积,通常情况下以计算体积为主,这是高考主要的考查方式. 对点、直线、平面之间的位置关系的考查:
1.从考查题型来看,涉及本专题的选择题、填空题一般从宏观的角度,结合实际观察、判断空间点、线、面的位置关系,确定命题的真假;解答题中则从微观的角度,严密推导线面平行、垂直.
2.从考查内容来看,主要考查空间点、线、面位置关系的命题的判断及证明,重点是根据平行、垂直的判定定理与性质定理证明线面平行、垂直,难点则是如何计算空间中有关距离的问题.
3.从考查热点来看,证明空间线面平行、垂直是高考命题的热点,结合平行、垂直的判定定理及性质定理,通过添加辅助线的方式证明是常考的方式.要注意结合空间几何体的特征严格推理论证.
第 4 页