1、已知:l,m,c,k,F=求:系统的振动微分方程,
sin(t) ,
时质点的振幅
解:●建模:质点作圆周运动,杆作定轴转动。 ●Maple > restart:
> J[0]:=m*l^2: lll> Fe:=-k*3*l*theta(t): >Fd:=-c*2*l*
diff(theta(t),t): mc> F:=F0*sin(omega*t):
>eq:=J[0]*diff(theta(t),t$2)=Fd*2*l+Fe*3*l+F*3*l:
>eq:=subs(diff(theta(t),t$2)=DDtheta,
diff(theta(t),t)=Dtheta, theta(t)=theta,eq):
>eq:=m*l^2*DDtheta+4*c*l^2*Dtheta+9*k*l^2*theta=
3*F0*sin(omega*t)*l: > eq:=expand(eq/(m*l^2));
4cDtheta9k?F0sin(?t)eq := DDtheta?????????3
mmml> b:=h/sqrt((omega0^2-omega^2)^2+4*delta^2*omega^2): > b1:=subs(omega=omega0,b);
Fkb1 := > omega0:=sqrt(9*k/m);
14h4???22
?? := 3k m> delta:=(2*c)/m: > h:=(3*f0)/(m*l):
> B:=simplify(l*b1,symbolic);
B := 1f0m
4ck答:系统振动微分方程为
,
,B=
。
2、已知:m=0.5kg,h=0.1m,k=0.8kN/m,求:系统的固有频率和振幅,物块的运动方程。
●Maple程序 > restart:
> delta[0]:=m*g*sin(beta)/k: >eq:=m*diff(x(t),t$2)=
m*g*sin(beta)- k*(delta[0]+x): > eq:=lhs(eq)-rhs(eq)=0: x>eq:=subs(diff(x(t),t$2)=DDx,
eq):
> eq:=simplify(eq);
°
δxhxAmgβeq := mDDx???xk???0
> X:=A*sin(omega[0]*t+theta): > omega[0]:=sqrt(k/m): > x[0]:=-delta[0]: > v[0]:=sqrt(2*g*h):
> A:=sqrt(x[0]^2+(v[0]/omega[0])^2): > theta:=arctan(omega[0]*x[0]/v[0]): > m:=0.5: > h:=0.1: > k:=0.8e3: > beta:=Pi/6: > g:=9.8:
?0 := 40.00>
omega[0]:=evalf(omega[0],4);
> A:=evalf(A,4);
A := .03513
> theta:=evalf(theta,4);
? := -.08724
> X:=eval(X);
X := .03513sin(40.00t???.08724)
答:
,A=35.1mm,
物块的运动方程为x=35.1sin(40t-0.087)mm。
3、吸引子的仿真。以杜芬方程为例,杜芬方程表示如下
+c+ax+bx3=Acosωt
●Maple程序
> restart:
> with(plots):
> de1:=diff(x(t),t)=y(t):
>de2:=diff(y(t),t)=-a*x(t)-b*x(t)^3-c*y(t)+A*cos(Omega*t):
> a:=-1:b:=1:c:=0.15:A:=0.3:Omega:=1: >
duffing:=dsolve({de1,de2,y(0)=-0.5,x(0)=-1},{x(t),y(t)},type=numeric,method=lsode): >
duffplot:=odeplot(duffing,[x(t),y(t)],0..200,numpoints=4000): > duffplot;
答:杜芬方程相图如图所示。 4、已知:l=
解:●建模:小球作平面运动 自由度f=1, 取广义坐标
●Maple程序 > restart: > x[rho]:=l:
> x[phi]:=l*phi:
> x[rho]:=subs(l=l(t),x[rho]):
> x[phi]:=subs(phi=phi(t),x[phi]): > v[rho]:=diff(x[rho],t): > v[phi]:=diff(x[phi],t):
> V:=vector([v[rho],v[phi]]):
求:摆的运动方程
vφl0-vt> v[A]:=sqrt(v[rho]^2+v[phi]^2): > T:=1/2*m*v[A]^2;
22?1???2?????? T := m?l(t)???l?(t)????????t???2????t????> T:=subs(diff(phi(t),t)=Dphi,phi(t)=phi,T):
> T:=collect(T,Dphi): > T[Dphi]:=diff(T,Dphi): > T[phi]:=diff(T,Dphi);
T? := 0
> T[Dphi]:=subs(l=l[0]-v*t,Dphi=Dphi(t),T[Dphi]);
TDphi := m(l0???vt)Dphi(t)
2> V:=-m*g*(l[0]-v*t)*cos(phi): > Q[phi]:=-diff(V,phi);
Q? := ?mg(l0???vt)sin(?)
> eq:=diff(T[Dphi],t)-T[phi]-Q[phi]=0;
2?????mg(l???vt)sin(?)???0 eq := ?2m(l0???vt)Dphi(t)v???m(l0???vt)????tDphi(t)??0??> eq:=subs(diff(Dphi(t),t)=DDphi,Dphi(t)=Dphi,eq): > eq:=(l[0]-v*t)*DDphi-2*v*Dphi+g*sin(phi)=0;
eq := (l0???vt)DDphi???2vDphi???gsin(?)???0
答:摆的运动微分方程为(
5、已知:m,r
求:系统的微分方程
)。
解:●建模:圆环作平面运动(纯滚动), 质点作曲线运动
自由度f=1,取广义坐标。
●Maple程序 > restart:
> J[0]:=m*r^2: > x[0]:=r*phi:
> x[0]:=subs(phi=phi(t),x[0]): > v[0]:=diff(x[0],t):
>v[A]:=sqrt(v[0]^2+v[0]^2-
2*v[0]^2* cos(phi)):
>T:=1/2*J[0]*diff(phi(t),t)^2+
rmgmg1/2*m*v[0]^2+1/2*m*v[A]^2: > T:=simplify(T): > T:=factor(T);
??(?2???cos(?))T := ?mr2?? ??t?(t)????2> V:=-m*g*r*cos(phi);
V := ?mgrcos(?)
> L:=T-V;
??(?2???cos(?))???mgrcos(?)L := ?mr2?? ??t?(t)????2> L:=subs(diff(phi(t),t)=Dphi,phi(t)=phi,L):
> L:=collect(L,Dphi): > L[Dphi]:=diff(L,Dphi);
LDphi := ?2mr2Dphi(?2???cos(?))
> L[phi]:=m*r^2*Dphi*sin(phi)-m*g*r*sin(phi): > L[Dphi]:=subs(Dphi=diff(phi(t),t),L[Dphi]): > eq:=diff(L[Dphi],t)-L[phi]=0: >eq:=subs(diff(phi(t),t)=Dphi(t),
diff(Dphi(t),t)=DDphi,eq);
eq := ?2mr2DDphi(?2???cos(?))???mr2Dphisin(?)???mgrsin(?)???0 答:系统的微分方程为2(2-
6、已知:R,r,m,,圆球C作纯滚动 求:系统的运动微分方程
解:●建模:圆槽绕O作定轴转动, 小球C作平面运动, 自由度f=2,取广义坐标, ●Maple程序 > restart:
> x[P]:=r*theta:
>x[P]:=subs(theta=theta(t),
x[P]):
> v[P]:=diff(x[P],t);
?? vP := r??(t)????t???> v[OP]:=r*omega;
y)。
OφθωxCxB