一、初一数学一元一次方程解答题压轴题精选(难)
1.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,
(1)写出数轴上点B表示的数________;
(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.试探索:
①:若|x-8|=2,则x =________.②:|x+12|+|x-8|的最小值为________.
(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,A,P两点之间的距离为2;
(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4. 【答案】 (1)﹣12 (2)6或10;0 (3)1.2或2 (4)3.2或1.6
【解析】【解答】(1)数轴上B表示的数为8-20=﹣12;
(2)①因为互为相反数的两个数绝对值相同,所以由│x-8│=2可得x-8=2或﹣(x-8)=2,解得x=6或10;
②因为绝对值最小的数是0,所以│x+12│+│x-8│的最小值是0;
(3)根据│A点在数轴上的位置-t秒后P点在数轴上的位置│=A、P两点间的距离列式得│8-5t│=2,因为互为相反数的两个数绝对值相同,所以8-5t=2或﹣(8-5t)=2,解得t=1.2或2;
(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离列式得│﹣12+10t-5t│=4,因为互为相反数的两个数绝对值相同,所以﹣12+10t-5t=4或﹣(﹣12+10t-5t)=4,解得t=3.2或1.6.
【分析】(1)抓住已知条件:B是数轴上位于点A左侧一点,且AB=20,且点A表示的数是8,就可求出OB的长,从而可得出点B表示的数。
(2)①根据|x-8|=2,可得出x-8=±2,解方程即可求出x的值;根据因为绝对值最小的数是0,因此可得出│x+12│+│x-8│的最小值是0。
(3)根据A,P两点之间的距离为2,可列出方程│8-5t│=2,再解方程求出t的值。 (4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离,可得出方程│﹣12+10t-5t│=4,再利用绝对值等于4的是为±4,可列出﹣12+10t-5t=±4,解方程求出t的值即可。
2.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.
(1)求A、B两点的对应的数a、b;
(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解. ①求线段BC的长;
②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由. 【答案】 (1)解:∵|a+3|+(b﹣2)2=0, ∴a+3=0,b﹣2=0, 解得,a=﹣3,b=2,
即点A表示的数是﹣3,点B表示的数是2 。
(2)解:①2x+1= x﹣8 解得x=﹣6, ∴BC=2﹣(﹣6)=8 即线段BC的长为8;
②存在点P,使PA+PB=BC理由如下: 设点P的表示的数为m, 则|m﹣(﹣3)|+|m﹣2|=8, ∴|m+3|+|m﹣2|=8, 当m>2时,解得 m=3.5, 当﹣3<m<2时,无解 当x<﹣3时,解得m=﹣4.5, 即点P对应的数是3.5或﹣4.5
【解析】【分析】(1)根据绝对值及平方的非负性,几个非负数的和为零则这几个数都为零从而得出
解方程组得出a,b的值,从而得出A,B两点表示的数 ;
(2)①解方程2x+1= x﹣8 ,得出x的值,从而得到C点的坐标,根据两点间的距离得出BC的长度;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,根据两点间的距离公式列出方程|m﹣(﹣3)|+|m﹣2|=8,然后分类讨论:当m>2时,解得 m=3.5,当﹣3<m<2时,无解 ,当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5 。
3.甲、乙两班学生到集市上购买苹果,苹果的价格如下:
购苹果数 不超过10千克 超过10千克但不超过20千克 超过20千克 每千克价格 10元 苹果30千克.
(1)乙班比甲班少付出多少元? (2)设甲班第一次购买苹果x千克. ①则第二次购买的苹果为多少千克; ②甲班第一次、第二次分别购买多少千克?
【答案】 (1)解:乙班购买苹果付出的钱数=8×30=240元, ∴乙班比甲班少付出256-240=16元
9元 8元 甲班分两次共购买苹果30千克(第二次多于第一次),共付出256元;而乙班则一次购买
(2)解:①甲班第二次购买的苹果为(30-x)千克; ②若x≤10,则10x+(30-x)×8=256, 解得:x=8
若10<x≤15,则9x+(30-x)×9=256 无解.
故甲班第一次购买8千克,第二次购买22千克
【解析】【分析】(1)根据20kg以上每千克的价格为8元可求出乙班付出的钱数,从而可求出乙班比甲班少付出多少.(2)设甲班第一次购买x千克,第二次购买30-x千克,则需要讨论①x≤10,②10<x≤15,列出方程后求解即可得出答案.
4.用“
”规定一种新运算:对于任意有理数a 和 b,规定
.
.
(1)求 (2)若
=32,求 的值; 的值;
如
:
(3)若 大小.
【答案】 (1)解:∵ ∴
=
, (其中 为有理数),试比较m、n的
(2)解:∵ ∴可列方程为 解方程得:x=1
=32,
;
(
3
)
解
:
∵
=
,
;
∴ ∴
;
【解析】【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法得出方程,求得方程的解即可;(3)利用规定的运算方法得出m、n,再进一步作差比较即可.
5.有两个大小完全一样长方形OABC和EFGH重合着放在一起,边OA、EF在数轴上, O为数轴原点(如图1),长方形OABC的边长OA的长为6个坐标单位.
(1)数轴上点A表示的数为________. (2)将长方形EFGH沿数轴所在直线水平移动.
①若移动后的长方形EFGH与长方形OABC重叠部分的面积恰好等于长方形OABC面积的一半时,则移动后点F在数轴上表示的数为________.
②若长方形EFGH向左水平移动后,D为线段AF的中点,求当长方形EFGH移动距离x为何值时,D、E两点在数轴上表示的数时互为相反数? 【答案】 (1)6 (2)①3或9 ②如图所示:
据题意得出D所表示的数为
,点E表示数为:
,
当D、E两点在数轴上表示的数时互为相反数时: 则
解得:
,
当移动x为4的时候D、E两点在数轴上表示的数时互为相反数.
【解析】【解答】解:(1)根据题意可得: A表示数为 的长, 故答案为:6.
( 2 )①当向左边移动的时候,刚好移到矩形长一半的时候,此时重叠面积为长方形 积为长方形
面积的一半,此时为3;
面
积的一半,此时为9,当向右边边移动的时候,刚好移到矩形长一半的时候,此时重叠面故答案为:3或9.
【分析】(1)根据题意可以看出结果;(2)①分为两种情况,分别向左或向右平移;②根据题意得出D所表示的数为 示数为:
,则
,当D、E两点在数轴上表示的数时互为相反数时点E表
,解出答案即可.
6.对于任意有理数,我们规定 =ad-bc. 例如 =1×4-2×3=-2 (1)按照这个规定,当a=3时,请你计算 (2)按照这个规定,若
=1,求x的值。
【答案】 (1)解:当a=3时, =2a×5a-3×4 =10a2-12 =10×32-12 =90-12 =78
(2)解:∵ ∴4(x+2)-3(2x-1)=1 去括号,可得:4x+8-6x+3=1
=1