好文档 - 专业文书写作范文服务资料分享网站

2024-2024中考数学试卷(带答案)

天下 分享 时间: 加入收藏 我要投稿 点赞

出不等式组的解集是解此题的关键.

9.B

解析:B 【解析】 【分析】

根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可. 【详解】

解:∵半径OC垂直于弦AB, ∴AD=DB=

1 AB=7 2在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+(7 )2, 解得,OA=4 ∴OD=OC-CD=3, ∵AO=OE,AD=DB, ∴BE=2OD=6 故选B 【点睛】

本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键

10.D

解析:D 【解析】 【分析】

由a2?a可确定a的范围,排除掉在范围内的选项即可. 【详解】

解:当a≥0时,a2?a, 当a<0时,a2??a,

∵a=1>0,故选项A不符合题意, ∵a=0,故选项B不符合题意,

∵a=﹣1﹣k,当k<﹣1时,a>0,故选项C不符合题意, ∵a=﹣1﹣k2(k为实数)<0,故选项D符合题意, 故选:D. 【点睛】

?a2a?a?本题考查了二次根式的性质,???a11.B

解析:B 【解析】

a?0a?0,正确理解该性质是解题的关键.

【分析】

根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解. 【详解】

解:设温度为x℃,

?x?1?x?5?根据题意可知?

x?3???x?8解得3?x?5. 故选:B. 【点睛】

本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.

12.A

解析:A 【解析】 【分析】 【详解】

∵正比例函数y=mx(m≠0),y随x的增大而减小, ∴该正比例函数图象经过第一、三象限,且m<0,

∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴, 综上所述,符合题意的只有A选项, 故选A.

二、填空题

13.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BAE+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<

解析:36°或37°. 【解析】

分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设

∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,进而得到∠C的度数. 详解:如图,过E作EG∥AB,

∵AB∥CD, ∴GE∥CD,

∴∠BAE=∠AEG,∠DFE=∠GEF, ∴∠AEF=∠BAE+∠DFE, 设∠CEF=x,则∠AEC=2x, ∴x+2x=∠BAE+60°, ∴∠BAE=3x-60°, 又∵6°<∠BAE<15°, ∴6°<3x-60°<15°, 解得22°<x<25°,

又∵∠DFE是△CEF的外角,∠C的度数为整数, -23°=37°-24°=36°∴∠C=60°或∠C=60°, 故答案为:36°或37°.

点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.

14.-6【解析】因为四边形OABC是菱形所以对角线互相垂直平分则点A和点C关于y轴对称点C在反比例函数上设点C的坐标为(x)则点A的坐标为(-x)点B的坐标为(0)因此AC=-2xOB=根据菱形的面积等

解析:-6 【解析】

因为四边形OABC是菱形,所以对角线互相垂直平分,则点A和点C关于y轴对称,点C在反比例函数上,设点C的坐标为(x,AC=-2x,OB=

kk2k),则点A的坐标为(-x,),点B的坐标为(0,),因此xxx2K,根据菱形的面积等于对角线乘积的一半得: X12kS菱形OABC????2x???12,解得k??6.

2x15.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM

解析:5 【解析】 【分析】

连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=

1AC=5,再根据∠2A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案. 【详解】

解:如图,连接CC1,

∵两块三角板重叠在一起,较长直角边的中点为M, ∴M是AC、A1C1的中点,AC=A1C1, ∴CM=A1M=C1M=

1AC=5, 2∴∠A1=∠A1CM=30°, ∴∠CMC1=60°, ∴△CMC1为等边三角形, ∴CC1=CM=5, ∴CC1长为5. 故答案为5.

考点:等边三角形的判定与性质.

16.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解不等式x﹣a>0得

解析:﹣2≤a<﹣1. 【解析】 【分析】

先解不等式组确定不等式组的解集(利用含a的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围. 【详解】

解不等式x﹣a>0,得:x>a, 解不等式1﹣x>2x﹣5,得:x<2, ∵不等式组有3个整数解, ∴不等式组的整数解为﹣1、 0、1, 则﹣2≤a<﹣1, 故答案为:﹣2≤a<﹣1. 【点睛】

本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.

17.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2

解析:12﹣43 【解析】 【分析】 【详解】

试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,

∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,

∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=3, ∴∠AOE=45°,ED=1, ∴AE=EO=3,DO=3﹣1, ∴S正方形DNMF=2(3﹣1)×2(3﹣1)×S△ADF=

1=8﹣43, 21×AD×AFsin30°=1, 2∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43. 故答案为12﹣43.

考点:1、旋转的性质;2、菱形的性质.

18.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC?sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈621

解析:1. 【解析】

试题分析:在Rt△CBD中,知道了斜边,求60°角的对边,可以用正弦值进行解答. 试题解析:在Rt△CBD中, DC=BC?sin60°=70×∵AB=1.5,

∴CE=60.55+1.5≈62.1(米). 考点:解直角三角形的应用-仰角俯角问题.

3≈60.55(米). 219.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合

2024-2024中考数学试卷(带答案)

出不等式组的解集是解此题的关键.9.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径,根据三角形中位线定理计算即可.【详解】解:∵半径OC垂直于弦AB,∴AD=DB=1AB=72在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+(7)2,解得,
推荐度:
点击下载文档文档为doc格式
4mfkm9zjms7zlrl1bkfq6d7jn4l8uv013ak
领取福利

微信扫码领取福利

微信扫码分享