C. lim C. y?x
(一)单项选择题
A. y?x?1
A. 坐标原点 C. y轴
ax?a?x C. y?
2 A. y?ln(1?x)
x2 A. lim2?1
x??x?2 A. limf(x)?f(x0)
C. limf(x)?f(x0) ?2⒊下列函数中为奇函数是(B).
A. f(x)?(x),g(x)?x
⒌下列极限存计算不正确的是(D).
⒋下列函数中为基本初等函数是(C).
高等数学基础形考作业1答案:
⒈下列各函数对中,(C)中的两个函数相等.
x?x0x?x0322
x?0D. y?ln(1?x)D. y??B. x轴
D. y?xB. y??xB. f(x)?B. y?xcosxx?x0第1章 函数
sinx1?0 D. limxsin?0x??x??xx⒍当x?0时,变量(C)是无穷小量.
sinx1 A. B.
xx1 C. xsin D. ln(x?2)xB. limln(1?x)?0??1,x?0x?0?1,⒎若函数f(x)在点x0满足(A),则f(x)在点x0连续。
第2章 极限与连续
x2?1 C. f(x)?lnx,g(x)?3lnx D. f(x)?x?1,g(x)?x?1⒉设函数f(x)的定义域为(??,??),则函数f(x)?f(?x)的图形关于(C)对称.
B. f(x)在点x0的某个邻域内有定义
D. limf(x)?lim?f(x)?x2,g(x)?x1
x?x0x?x0⒈设函数
⒌函数y?? ⒈函数f(x)?⒉求函数y?lg1x⒊lim(1?)?e2.x??2x(三)计算题
(二)填空题
求:f(?2),f(0),f(1).
??12 则定义域为?x|x?0或x? A R O h E
解:f??2???2,f?0??0,f?1??e?e?x?1,x?0的间断点是x?0.
sinx,x?0?2x?1的定义域.xB
11??2?⒉已知函数f(x?1)?x?x,则f(x)? x2-x .x2?9?ln(1?x)的定义域是?3,???.
x?3⒍若limf(x)?A,则当x?x0时,f(x)?A称为x??ex,x?0f(x)???x,x?0?2x?1
??x?0
??2x?11?解:y?lg有意义,要求?解得?x?或x?0x2??x?0
???x?0?
1?x?⒋若函数f(x)??(1?x),x?0,在x?0处连续,则k? e .
?x?0?x?k,⒊在半径为R的半圆内内接一梯形,梯形的一个底边与半圆的直径重合,另一底边的两个端点在半圆上,
试将梯形的面积表示成其高的函数.解: D 2
x0时的无穷小量。
⒍求lim
x2?1⒌求lim.
x??1sin(x?1)1?x2?1⒎求lim.
x?0sinx⒏求lim(故S?x???x?1x).x?3x2?6x?8⒐求lim2.
x?4x?5x?4?lim2x?0则上底=2AE?2R?hAE?OA2?OE2?R2?h21?x?2(1?x2?1)??sinxx?hA2R?2R2?h2?hR?R2?h22sin3x⒋求lim.
x?0sin2xsin3xsin3x?3xsin3x3133解:lim?lim3x?lim3x?=??x?0sin2xx?0sin2xx?0sin2x2122?2x2x2xx2?1(x?1)(x?1)x?1?1?1解:lim?lim?lim???2x??1sin(x?1)x??1sin(x?1)x??1sin(x?1)1x?1tan3x.
x?0xtan3xsin3x1sin3x11?limA?lim??3?1??3?3解:limx?0x?0xxcos3xx?03xcos3x1 C
设梯形ABCD即为题中要求的梯形,设高为h,即OE=h,下底CD=2R直角三角形AOE中,利用勾股定理得
0?0?1?1??11?x2?1(1?x2?1)(1?x2?1)x2?lim?lim解:lim2x?0x?0x?0sinx(1?x?1)sinx(1?x2?1)sinx111(1?)x[(1?)?x]?1x?1xe?1xxx?x)?lim()?lim?lim?3?e?4解:lim(xx??x?3x??x??x??33e11?(1?)x[(1?)3]3xxx33
(1)
⒑设函数
(2)
x??1?x??1?x?1?x?1?讨论f(x)的连续性。
f?1??1x??1?x?1?(一)单项选择题
A. f(0)
C. f?(x)
C. 2f?(x0)
x?1?x?1? A. ?2f?(x0)
x??1?x??1? ⒈设f(0)?0且极限limx?0 ⒉设f(x)在x0可导,则limlimf?x??limx?1高等数学基础作业2答案:
limf?x??limx??1解:分别对分段点x??1,x?1处讨论连续性
h?0x?1?x??1?22D. 0cvx
B. f?(0)limf?x??lim?x?1???1?1?0B. f?(x0)limf?x??lim?x?2???1?2??1由(1)(2)得f?x?在除点x??1外均连续
D. ?f?(x0)第3章 导数与微分
x2?6x?8?x?4??x?2??limx?2?4?2?2解:lim2?limx?4x?5x?4x?4?x?4??x?1?x?4x?14?13所以limf?x??limf?x?,即f?x?在x??1处不连续
所以limf?x??limf?x??f?1?即f?x?在x?1处连续
f(x)f(x)?(C).存在,则limx?0xxf(x0?2h)?f(x0)?(D).
2h?(x?2)2,x?1?f(x)??x,?1?x?1?x?1,x??1?4
A. e
A. 99
⒌设y?x ⒊曲线f(x)? ⒉设f(e)?e(三)计算题
(二)填空题
⒋曲线f(x)?sinx在( ⒊设f(x)?e,则lim ⒍设y?xlnx,则y??? ⒈求下列函数的导数y?:
解:y??x2x2x?B. ?99
x⑵y?cotx?xlnx
⑴y?(xx?3)e
⒌下列结论中正确的是(C).
,则y??2x(1?lnx)2x?5ex,则
x?1在(1,2)处的切线斜率是k?
?2x?1。xx?C. 99!
?x?32f(1??x)?f(1)?(A).
?x?0?x11B. 2e C. e D. e24π,1)处的切线方程是y?1。2df(lnx)2lnx5??dxxx ⒋设f(x)?x(x?1)(x?2)?(x?99),则f?(0)?(D).
D. ?99!1?2?xsin,x?0 ⒈设函数f(x)??,则f?(0)? 0 .x?x?0?0,31 解:y??xx?3e?xx?3?e? ?(x?3)e?x2ex2 A. 若f(x)在点x0有极限,则在点x0可导. B. 若f(x)在点x0连续,则在点x0可导.
C. 若f(x)在点x0可导,则在点x0有极限. D. 若f(x)在点x0有极限,则在点x0连续.
???cotx????x2?lnx?x2?lnx???csc2x?x?2xlnx5
1
。2
。
x