好文档 - 专业文书写作范文服务资料分享网站

2020年深圳市中考数学模拟试题及答案(解析版) (16)

天下 分享 时间: 加入收藏 我要投稿 点赞

写作法,保留作图痕迹)

(2)在(1)条件下,连接BF,求∠DBF的度数.

【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;

(2)根据∠DBF=∠ABD﹣∠ABF计算即可; 【解答】解:(1)如图所示,直线EF即为所求;

(2)∵四边形ABCD是菱形,

∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C. ∴∠ABC=150°,∠ABC+∠C=180°, ∴∠C=∠A=30°,

∵EF垂直平分线线段AB, ∴AF=FB,

∴∠A=∠FBA=30°,

∴∠DBF=∠ABD﹣∠FBE=45°.

【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.

20.(7.00分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯

第16页(共27页)

片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.

(1)求该公司购买的A、B型芯片的单价各是多少元?

(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?

【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论; (2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.

【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条, 根据题意得:解得:x=35,

经检验,x=35是原方程的解, ∴x﹣9=26.

答:A型芯片的单价为26元/条,B型芯片的单价为35元/条. (2)设购买a条A型芯片,则购买(200﹣a)条B型芯片, 根据题意得:26a+35(200﹣a)=6280, 解得:a=80.

答:购买了80条A型芯片.

【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.

21.(7.00分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.

(1)被调查员工人数为 800 人:

第17页(共27页)

=,

(2)把条形统计图补充完整;

(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?

【分析】(1)由“不剩”的人数及其所占百分比可得答案;

(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可; (3)用总人数乘以样本中“剩少量”人数所占百分比可得. 【解答】解:(1)被调查员工人数为400÷50%=800人, 故答案为:800;

(2)“剩少量”的人数为800﹣(400+80+40)=280人, 补全条形图如下:

(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×人.

=3500

【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.

第18页(共27页)

22.(7.00分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE. (1)求证:△ADE≌△CED; (2)求证:△DEF是等腰三角形.

【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);

(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.

【解答】证明:(1)∵四边形ABCD是矩形, ∴AD=BC,AB=CD.

由折叠的性质可得:BC=CE,AB=AE, ∴AD=CE,AE=CD. 在△ADE和△CED中,∴△ADE≌△CED(SSS). (2)由(1)得△ADE≌△CED, ∴∠DEA=∠EDC,即∠DEF=∠EDF, ∴EF=DF,

∴△DEF是等腰三角形.

【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题

第19页(共27页)

的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.

23.(9.00分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B. (1)求m的值;

(2)求函数y=ax2+b(a≠0)的解析式;

(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.

【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;

(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;

(3)分M在BC上方和下方两种情况进行解答即可. 【解答】解:(1)将(0,﹣3)代入y=x+m, 可得:m=﹣3;

(2)将y=0代入y=x﹣3得:x=3, 所以点B的坐标为(3,0),

将(0,﹣3)、(3,0)代入y=ax2+b中, 可得:解得:

, ,

所以二次函数的解析式为:y=x2﹣3; (3)存在,分以下两种情况:

第20页(共27页)

2020年深圳市中考数学模拟试题及答案(解析版) (16)

写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形AB
推荐度:
点击下载文档文档为doc格式
4loww2sv3t1xu1x81dzc4m0xd0pw4b00nn7
领取福利

微信扫码领取福利

微信扫码分享