2024-2024年中考数学试题最新分类汇编:图形的相似
(2013,永州)如图,已知AB?BD,CD?BD
(1)若AB=9,CD=4,BD=10,请问在BD上是否存在P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?若存在,求BP的长;若不存在,请说明理由; (2)若AB=9,CD=4,BD=12,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求BP的长;
(3)若AB=9,CD=4,BD=15,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求BP的长;
(4)若AB=m,CD=n,BD=,请问m,n,l满足什么关系时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的一个P点?两个P点?三个P点? A
(2013?巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为 1.5米 .
CBPD?第25题图?
考点: 相似三角形的应用. 分析: 根据球网和击球时球拍的垂直线段平行即DE∥BC可知,△ADE∽△ACB,根据其相似比即可求解. 解答: 解:∵DE∥BC, ∴△ADE∽△ACB,即则=, =, ∴h=1.5m. 故答案为:1.5米. 点评: 本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题. (2013,成都)如图,点B在线段AC上,点D,E在AC同侧,?A??C?90o,
BD?BE,AD?BC. (1)求证:AC?AD?CE;
(2)若AD?3,CE?5,点P为线段AB上的动点,连接DP,作PQ?DP,交直线BE与点Q;
i)当点P与A,B两点不重合时,求DP的值; PQii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)
(1)证△ABD≌△CEB→AB=CE;
(2)如图,过Q作QH⊥BC于点H,则△ADP∽△HPQ,△BHQ∽△BCE,
∴ADAPBHQH? ,; ? PHQHBCECBHy? 35设AP=x ,QH=y,则有∴BH=3y3y,PH=+5?x 55∴33y?5?x5?x,即(x?5)(3y?5x)?0 y又∵P不与A、B重合,∴x?5, 即 x?5?0, ∴3y?5x?0即3y?5x
∴DPx3?? PQy5234 3(3)(2013?广安)雅安芦山发生7.0级地震后,某校师生准备了一些等腰直角三角形纸片,从每张纸片中剪出一个半圆制作玩具,寄给灾区的小朋友.已知如图,是腰长为4的等腰直角
三角形ABC,要求剪出的半圆的直径在△ABC的边上,且半圆的弧与△ABC的其他两边相切,请作出所有不同方案的示意图,并求出相应半圆的半径(结果保留根号).
考点: 作图—应用与设计作图. 专题: 作图题. 分析: 分直径在直角边AC、BC上和在斜边AB上三种情况分别求出半圆的半径,然后作出图形即可. 解:根据勾股定理,斜边AB=解答: =4, ①如图1、图2,直径在直角边BC或AC上时, ∵半圆的弧与△ABC的其它两边相切, ∴=解得r=4, ﹣4, ②如图3,直径在斜边AB上时,∵半圆的弧与△ABC的其它两边相切, ∴=, 解得r=2, 作出图形如图所示: 点评: 本题考查了应用与设计作图,主要利用了直线与圆相切,相似三角形对应边成比例的性质,分别求出半圆的半径是解题的关键. (2013?眉山)如图,△ABC中,E、F分别是AB、AC上的两点,且AEF的面积为2,则四边形EBCF的面积为_________
AEAF1??,若△EBFC2
(2013?眉山)在矩形ABCD中,DC=23,CF⊥BD分别交BD、AD于点E、F,连接BF。 ⑴求证:△DEC∽△FDC;
⑵当F为AD的中点时,求sin∠FBD的值及BC的长度。
A F D E B C (2013?绵阳)我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心。重心有很多美妙的性质,如在关线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题。请你利用重心的概念完成如下问题: (1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:AO2?; AD3