好文档 - 专业文书写作范文服务资料分享网站

串行传输_VS_并行传输.

天下 分享 时间: 加入收藏 我要投稿 点赞

在差分电路中,输出电平为正电压时表示逻辑“1”,输出负电压时表示逻辑“0”,而输出“0”电压是没有意义的,它既不代表“1”,也不代表“0”。而在图7所示的差分通信中,干扰信号会同时进入相邻的两条信号线中,当两个相同的干扰信号分别进入接收端的差分放大器的两个反相输入端后,输出电压为0。所以说,差分信号技术对干扰信号具有很强的免疫力。

图8:差分信号传输

正因如此,实际电路中只要使用低压差分信号(LowVoltageDifferentialSignal,LVDS),350mV左右的振幅便能满足近距离传输的要求。假定负载电阻为100Ω,采用LVDS方式传输数据时,如果双绞线长度为10米,传输速率可达400Mbps;当电缆长度增加到20米时,速率降为100Mbps;而当电缆长度为100米时,速率只能达到10Mbps左右。

在近距离数据传输中,LVDS不仅可以获得很高的传输性能,同时还是一个低成本的方

案。LVDS器件可采用经济的CMOS工艺制造,并且采用低成本的3类电缆线及连接件即可达到很高的速率。同时,由于LVDS可以采用较低的信号电压,并且驱动器采用恒流源模式,其功率几乎不会随频率而变化,从而使提高数据传输率和降低功耗成为可能。因此,LVDS技术在USB、SATA、PCIExpress以及HyperTransport中得以应用,而LCD中控制电路向液晶屏传送像素亮度控制信号,也采用了LVDS方式。

四、新串行时代已经到来

差分传输技术不仅突破了速度瓶颈,而且使用小型连接可以节约空间。近年来,除了USB和FireWire,还涌现出很多以差分信号传输为特点的串行连接标准,几乎覆盖了主板总线和外部I/O端口,呈现出从并行整体转移到新串行时代的大趋势,串行接口技术的应用在2005年将进入鼎盛时期(图9)。

图9:所有的I/O技术都将采用串行方式

1.LVDS技术,突破芯片组传输瓶颈

随着电脑速度的提高,CPU与北桥芯片之间,北桥与南桥之间,以及与芯片组相连的各种设备总线的通信速度影响到电脑的整体性能。可是,一直以来所采用的FR4印刷电路板因存在集肤效应和介质损耗导致的码间干扰,限制了传输速率的提升。

在传统并行同步数字信号的速率将要达到极限的情况下,设计师转向从高速串行信号寻找出路,因为串行总线技术不仅可以获得更高的性能,而且可以最大限度地减少芯片管脚数,简化电路板布线,降低制造成本。Intel的PCIExpress、AMD的HyperTansport以及RAMBUS公司的redwood等I/O总线标准不约而同地将低压差分信号(LVDS)作为新一代高速信号电平标准。

一个典型的PCIExpress通道如图9所示,通信双方由两个差分信号对构成双工信道,一对用于发送,一对用于接收。4条物理线路构成PCIExpressx1。PCIExpress标准中定义了x1、x2、x4和x16。PCIExpressx16拥有最多的物理线路(16×4=64)。

图10:PCIExpressx1数据通道

即便采用最低配置的x1体系,因为可以在两个方向上同时以2.5GHz的频率传送数据,带宽达到5Gbps,也已经超过了传统PCI总线1.056Gbps(32bit×33MHz)的带宽。况且,PCI总线是通过桥路实现的共享总线方式,而PCIExpress采用的“端对端连接”(图11),也让每个设备可以独享总线带宽,因此可以获得比PCI更高的性能。

图11:PCIExpress端对端连接消除了桥路

AMD的HyperTransport技术与PCIExpress极其相似,同样采用LVDS数据通道,最先用于南北桥之间的快速通信。其工作频率范围从200MHz到1GHz,位宽可以根据带宽的要求灵活选择2、4、8、16或32位。HyperTransport最先用于南北桥之间的快速通信,今后会用于所有芯片间的连接。

2.SATA,为硬盘插上翅膀

在ATA33之前,一直使用40根平行数据线,由于数据线之间存在串扰,限制了信号频率的提升。因此从ATA66开始,ATA数据线在两根线之间增加了1根接地线正是为了减少相互干扰。增加地线后,数据线与地线之间仍然存在分布电容C2(图12),还是无法彻底解决干扰问题,使得PATA接口的最高工作频率停留在133MHz上。除了信号干扰这一根本原因之外,PATA还存在不支持热插拔和容错性差等问题。

图12:并行ATA的线间串扰

SATA是Intel公司在IDF2000上推出的,此后Intel联合APT、Dell、IBM、Seagate以及Maxtor等业界巨头,于2001年正式推出了SATA1.0规范。而在春季IDF2002上,SATA2.0规范也已经公布。

SATA接口包括4根数据线和3根地线,共有7条物理连线。目前的SATA1.0标准,数据传输率为150MB/s,与ATA133接口133MB/s的速度略有提高,但未来的SATA2.0/3.0可提升到300MB/s以至600MB/s。从目前硬盘速度的增长趋势来看,SATA标准至少可以满足未来数年的要求了。

3.FireWire,图像传输如虎添翼

FireWire(火线)是1986年由苹果电脑公司起草的,1995年被美国电气和电子工程师学会(IEEE)作为IEEE1394推出,是USB之外的另一个高速串行通信标准。FireWire最早的应用目标为摄录设备传送数字图像信号,目前应用领域已遍及DV、DC、DVD、硬盘录像机、电视机顶盒以及家庭游戏机等。

FireWire传输线有6根电缆,两对双绞线形成两个独立的信道,另外两根为电源线和

地线。SONY公司对FireWire进行改进,舍弃了电源线和地线,形成只有两对双绞线的精简版FireWire,并取名为i.Link。

FireWire数据传输率与USB相当,单信道带宽为400Mbps,通信距离为4.5米。不过,IEEE1394b标准已将单信道带宽扩大到800Mbps,在IEEE1394-2000新标准中,更是将其最大数据传输速率确定为1.6Gbps,相邻设备之间连接电缆的最大长度可扩展到100米。

五、“串行”能红到哪天?

阅读本文之后,如果有人问关于串行传输与并行传输谁更好的问题,你也许会脱口而出:串行通信好!但是,串行传输之所以走红,是由于将单端信号传输转变为差分信号传输,并提升了控制器工作频率的原因,而“在相同频率下并行通信速度更高”这个基本道理是永远不会错的,通过增加位宽来提高数据传输率的并行策略仍将发挥重要作用。当然,前提是有更好的措施来解决并行传输的种种问题。

技术进步周而复始,以至无穷,没有一项技术能够永远适用。电脑技术将来跨入THz时代后,对信号传输速度的要求会更高,差分传输技术是否能满足要求?是否需要另一种更好的技术来完成频率的另一次突破呢?不妨拭目以待!

串行传输_VS_并行传输.

在差分电路中,输出电平为正电压时表示逻辑“1”,输出负电压时表示逻辑“0”,而输出“0”电压是没有意义的,它既不代表“1”,也不代表“0”。而在图7所示的差分通信中,干扰信号会同时进入相邻的两条信号线中,当两个相同的干扰信号分别进入接收端的差分放大器的两个反相输入端后,输出电压为0。所以说,差分信号技术对干扰信号具有很强的免疫力。图8:差分信号传输<
推荐度:
点击下载文档文档为doc格式
4kii430ni29s4tl8lgrm6o2vt5lzj600cqa
领取福利

微信扫码领取福利

微信扫码分享