第十九章 含参变量的积分
§1 含参变量的正常积分
1.求下列极限: (1)lim?(2)lim1??0?1x2??2dx; x2cos?xdx;
??00?2(3)lim??0??1??11?x??22dx.
221解(1)由于f(x,?)?所以,
??0?122故I(?)??x??dx在[?1,1]连续,x??在[?1,1]?[?1,1]上连续,
?1lim?1x2??2dx?limI(?)?I(0)????021?1x2dx?2?xdx?1.
01(2)由于f(x,?)?xcos?x在[0,2]?[0,2]上连续,故I(?)?以,
??00?20x2cos?xdx在[0,2]连续,所
lim?x2cos?xdx?limI(?)?I(0)??x2dx???002228. 311?x????222(3)
??1??11?x??2dx??111?x??220dx???11?x??220dx??101??1dx,
由于f(x,?)?11?x2??2??00在[0,1]?[0,1]上连续,故I(?)??1?x12 dx在[0,1]连续,所以,
lim?111?x2??2?dx?limI(?)?I(0)????01?. dx?01?x241而对???R,x?R有,
??11?x2??20dx??,
?1??11?x2??21dx??,因此
??00lim?111?x2??2dx?lim?1dx?0,lim?11?x??1??221??11?x2??2???01dx?0, 1因而,
??0?lim?1??1?x??22??00dx?lim?2??001?x??22dx
?lim?2.求F?(x),其中: (1)F(x)?(2)F(x)?11?x??2??01dx??4
?x2xe?xydy;
2?cosxsinxex1?y2dy;
(3)F(x)?sin(xy)?a?xydy;
b?x(4)F(x)??[?0xx2t2f(t,s)ds]dt.
x2解(1)F?(x)??(2)F?(x)??xe?xy2ydy?e2?x(x2)2?2x?e1?cos2x?xx2???e?xyy2dy?2xe?x?e?x.
xx2253?cosxsinxex1?y21?y2dy?ex(cosx)??exxcosx1?sin2x(sinx)?
??(3)F?(x)?cosxsinxex1?y21?y2dy?exsinxsinx?ecosx.
b?xa?x?cos(xy)dy?sin(x(b?x))sin(x(a?x))(b?x)??(a?x)?
b?xz?x =(1111?)sin[x(x?b)]?(?)sin[x(x?a)]. xb?xxa?x22x?xxx2(4)F?(x)??(?2f(t,s)ds)dt??2f(x,s)ds??2xf(t,x)dt.
0?xtx03.设f(x)为连续函数,
F(x)?求F??(x).
1h2?x0[?f(x????)d?]d?,
0xx2x??1x1x解 由于F(x)?2?d??f(x????)d??2?d??f(u)du,所以,
0x??h0h0x?2x??13xF?(x)?2[?f(u)du??(?f(u)du)d?]
2x0x???xhx13x ?2{?f(u)du??[2f(2x??)?f(x??)]d?},
0h2x11F??(x)?2[3f(3x)?2f(2x)?2f(3x)?f(2x)]?2[5f(3x)?3f(2x)].
hh1hh注记 该题的函数应为F(x)?2?[?f(x????)d?]d?(这从该教材第二版亦可得到印证),
00h则
F(x)?所以,
1h2?h0d??f(x????)d??0h1h2?x0d??x???hx??f(u)du,
1x?x???h1h[f(u)du]d??2?[f(x???h)?f(x??)]d? h2?0?x?x??h0x?h1x?2hf(u)du??f(u)du], ?2[?xhx?h11 F??(x)?2[f(x?2h)?f(x?h)?f(x?h)?f(x)]?2[f(x?2h)?f(x?h)?f(x)].
hhF?(x)?4.研究函数F(y)??10yf(x)dx的连续性,其中f(x)是[0,1]上连续且为正的函数.
x2?y2解 当y?0时,被积函数在相应的闭矩形上是连续的,因此F(y)在y?0连续.当y?0时,
F(0)?0.
而y?0时,设m为f(x)在[0,1]上的最小值,则m?0.由于
F(y)?m?10y11?dx?marctanlimarctan?, ,而22?y?0yy2x?y故有lim?F(y)若存在,必然lim?F(y)?y?0y?0m??0?F(0)或不存在,因而F(y)在y?0时间断. 25.应用积分号下求导法求下列积分:
?(1)(2)(3)
??20; ln(a2?sin2x)dx(a?1)
?0ln(1?2acosx?a2)dx(a?1);
???20ln(a2sin2x?b2cos2x)dx(a,b?0);
arctan(atanx)dx(a?1).
tanx??(4)
20解(1)设I(a)? I?(a)???20ln(a2?sin2x)dx,则有
??20?2a[ln(a2?sin2x)]dx??22dx
0a?sin2x?x???2(011?)dx?a?sinxa?sinx,
2a?12(arctana?1a?12?arctana?1a?12)
?即
?a?12I(a)??c的确定较为困难,可如下进行.
?a2?1?da??ln(a?a2?1)?c.
c?I(a)??ln(a?a?1)??2ln(a2?sin2x)dx??ln(a?a2?1)
02sinx??2[lna?ln(1?2)]dx??ln(a?a2?1) 0a22?22sinxa?a?1??2ln(1?2)dx??ln, 0aa?a?a2?11sin2x??ln2,又0?1?2?1??1,所以, 令a???,?ln2aaa1sin2xln(1?2)?ln(1?)?0,
aa2??20sin2xsin2x1?122ln(1?ln(1?)dx?ln(1?)dx?)dx?ln(1?)?0(a???), ?0?02a2a2a2a22??a?a2?1. ?c??ln2,即I(a)??ln(a?a?1)??ln2??ln2(2)设I(a)???0ln(1?2acosx?a2)dx,则
I?(a)???02(a?cosx)1?a2?1dx??dx 220a1?2acosx?a1?2acosx?a1?a2 ??aa??2?01?1?a2?dx??2aa(1?a2)?0(1?a)?2acosx?1dx
2a1?cosx21?a ??a?1?a2(1?a)1?a2?2?a?arctan(x)???,
1?a0a(1?a2)a21?a2a(1?a2)(1?a)2(1?a)所以,I(a)?I(a)?I(0)?a??2da?ln(1?a). ?01?a22a?(3)将a看作参变量,b认为是常数,记I(a)??20ln(a2sin2x?b2cos2x)dx.可先设a?0,
b?0,则
?I?(a)??20?2asin2x22222[ln(asinx?bcosx)]dx??2dx.
0asin2x?b2cos2x?a??2?2若a?b,则I?(a)??2sinxdx?,若a?b作代换t?tanx,得
0b2bI?(a)????02at2dt2???a2t2?b21?t2a?0t2dt(1?t2)(t2?b)a22
2??a21b2?2 ??(2220aa?b1?ta?b21(t2?b)a22)dt??aa?b22??ba?b22??a?b,
所以,I(a)?π?a?bda?πln(a?b)?c,而I(b)??lnb??ln(2b)?c?c???ln2,于是
a?b. I(a)?πln(a?b)??ln2??ln2a?b2.
若a?0或b?0,则可以?a或?b代替a或b,因而总有I(a)?I(a)??ln?(4)记I(a)??20arctan(atanx)?arctan(atanx)dx,令f(x,a)?,当x?0,时,f无定义,
tanx2tanx但lim?f(x,a)?a,lim?f(x,a)?0,故补充定义f(0,a)?a,f(x?0x??2?则f在[0,2?]?[?b,b],a)?0,
2连续(0?b?1),从而I(a)在(?1,1)连续.
1??, x?(0,),??1?a2tan2x2fa(x,a)??
??0, x?0,,?2?显然fa(x,0)在x??2点不连续,但fa(x,a)分别在[0,2?]?(?1,0)和[0,2?]?(0,1)连续,故有
?20?0I?(a)??fa(x,a)dx??2令tanx?t,
1dx,a?(?1,0)或a?(0,1).
1?a2tan2xI?(a)????011dt?(1?t2)(1?a2t2)1?a2???01?a2t2?a2t2?a2dt
(1?t2)(1?a2t2)1 ?1?a2积分之
???01a2?,a?(?1,0)或a?(0,1). [?]dt?2222(1?a)(1?t)(1?at)I(a)??2ln(1?a)?c1,a?(0,1);
I(a)???2ln(1?a)?c2,a?(?1,0).
a?0a?0因为I(a)在(?1,1)连续,故I(0)?lim?I(a)?0?lim?I(a),得c1?c2?0,从而得