好文档 - 专业文书写作范文服务资料分享网站

机器学习考试卷 final2007s-solution 

天下 分享 时间: 加入收藏 我要投稿 点赞

10-701FinalExam,Spring2007

1.Personalinfo:

?Name:

?Andrewaccount:?E-mailaddress:

2.Thereshouldbe16numberedpagesinthisexam(includingthiscoversheet).3.Youcanuseanymaterialyoubrought:anybook,classnotes,yourprintoutsofclassmaterialsthatareontheclasswebsite,includingmyannotatedslidesandrelevantreadings,andAndrewMoore’stutorials.Youcannotusematerialsbroughtbyotherstudents.Calculatorsareallowed,butnolaptops,PDAs,phonesorInternetaccess.4.Ifyouneedmoreroomtoworkoutyouranswertoaquestion,usethebackofthepageandclearlymarkonthefrontofthepageifwearetolookatwhat’sontheback.5.Worke?ciently.Somequestionsareeasier,somemoredi?cult.Besuretogiveyourselftimetoansweralloftheeasyones,andavoidgettingboggeddowninthemoredi?cultonesbeforeyouhaveansweredtheeasierones.6.Notethereareextra-creditsub-questions.Thegradecurvewillbemadewithoutconsideringstudents’extracreditpoints.Theextracreditwillthenbeusedtotrytobumpyourgradeupwithouta?ectinganyoneelse’sgrade.7.Youhave180minutes.8.Goodluck!

Question

ShortquestionsSVMandslacksGNB

456

Learningtheory

1

Max.score

10

14+3extra

1[Points]ShortQuestions

Thefollowingshortquestionsshouldbeansweredwithatmosttwosentences,and/orapicture.Forthe(true/false)questions,answertrueorfalse.Ifyouanswertrue,provideashortjusti?cation,iffalseexplainwhyorprovideasmallcounterexample.

1.[points]Yourbillionairefriendneedsyourhelp.Sheneedstoclassifyjobapplicationsintogood/badcategories,andalsotodetectjobapplicantswholieintheirapplicationsusingdensityestimationtodetectoutliers.Tomeettheseneeds,doyourecommendusingadiscriminativeorgenerativeclassi?er?Why?

2.[points]Yourbillionairefriendalsowantstoclassifysoftwareapplicationstodetectbug-proneapplicationsusingfeaturesofthesourcecode.Thispilotprojectonlyhasafewapplicationstobeusedastrainingdata,though.Tocreatethemostaccurateclassi?er,doyourecommendusingadiscriminativeorgenerativeclassi?er?Why?

3.[points]Finally,yourbillionairefriendalsowantstoclassifycompaniestodecidewhichonetoacquire.Thisprojecthaslotsoftrainingdatabasedonseveraldecadesofresearch.Tocreatethemostaccurateclassi?er,doyourecommendusingadiscrim-inativeorgenerativeclassi?er?Why?

4.[points]Assumethatweareusingsomeclassi?erof?xedcomplexity.Drawagraphshowingtwocurves:testerrorvs.thenumberoftrainingexamplesandcross-validation

2

errorvs.thenumberoftrainingexamples.

5.[points]AssumethatweareusinganSVMclassi?erwithaGaussiankernel.Drawagraphshowingtwocurves:trainingerrorvs.kernelbandwidthandtesterrorvs.kernelbandwidth

6.[points]AssumethatwearemodelinganumberofrandomvariablesusingaBayesianNetworkwithnedges.Drawagraphshowingtwocurves:Biasoftheestimateofthejointprobabilityvs.nandvarianceoftheestimateofthejointprobabilityvs.n.

7.[points]

(a)BothPCAandlinearregressioncanbethoughtofasalgorithmsforminimizinga

sumofsquarederrors.Explainwhicherrorisbeingminimizedineachalgorithm.

8.[points]Alongtimeagotherewasavillageamidsthundredsoflakes.Twotypesof?shlivedintheregion,butonlyonetypeineachlake.Thesetypesof?shbothlookedexactlythesame,smelledexactlythesamewhencooked,andhadtheexactsamedelicioustaste-exceptonewaspoisonousandwouldkillanyvillagerwhoateit.Theonlyotherdi?erencebetweenthe?shwastheire?ectonthepH(acidity)ofthelaketheyoccupy.ThepHforlakesoccupiedbythenon-poisonoustypeof?shwas

2

distributedaccordingtoaGaussianwithunknownmean(μsafe)andvariance(σsafe)

3

andthepHforlakesoccupiedbythepoisonoustypewasdistributedaccordingtoa

2

di?erentGaussianwithunknownmean(μdeadly)andvariance(σdeadly).(Poisonous?shtendedtocauseslightlymoreacidicconditions).

Naturally,thevillagersturnedtomachinelearningforhelp.However,therewasmuchdebateabouttherightwaytoapplyEMtotheirproblem.Foreachofthefollow-ingprocedures,indicatewhetheritisanaccurateimplementationofExpectation-Maximizationandwillprovideareasonableestimateforparametersμandσ2foreachclass.

(a)Guessinitialvaluesofμandσ2foreachclass.(1)Foreachlake,?ndthemost

likelyclassof?shforthelake.(2)Updatetheμandσ2valuesusingtheirmax-imumlikelihoodestimatesbasedonthesepredictions.Iterate(1)and(2)untilconvergence.

(b)Foreachlake,guessaninitialprobabilitythatitissafe.(1)Usingtheseprob-abilities,?ndthemaximumlikelihoodestimatesfortheμandσvaluesforeachclass.(2)Usetheseestimatesofμandσtoreestimatelakesafetyprobabilities.Iterate(1)and(2)untilconvergence.

(c)ComputethemeanandvarianceofthepHlevelsacrossalllakes.Usethesevalues

fortheμandσ2valueofeachclassof?sh.(1)Usetheμandσ2valuesofeachclasstocomputethebeliefthateachlakecontainspoisonous?sh.(2)Findthemaximumlikelihoodvaluesforμandσ2.Iterate(1)and(2)untilconvergence.

4

2[points]ReinforcementLearning

ConsiderthefollowingMarkovDecisionProcess:

r=1r=1r=1r=10S1r=1S2r=1S3r=1S4r=1S5WehavestatesS1,S2,S3,S4,andS5.WehaveactionsLeftandRight,andthechosenactionhappenswithprobability1.InS1theonlyoptionistogobacktoS2,andsimilarlyinS5wecanonlygobacktoS4.Therewardfortakinganyactionisr=1,exceptfortakingactionRightfromstateS4,whichhasarewardr=10.Forallpartsofthisproblem,assumethatγ=0.8.

1.WhatistheoptimalpolicyforthisMDP?

2.WhatisV?(S5)?Itisacceptabletostateitintermsofγ,butnotintermsofstatevalues.

3.ConsiderexecutingQ-learningonthisMDP.AssumethattheQvaluesforall(state,action)pairsareinitializedto0,thatα=0.5,andthatQ-learningusesagreedyexplorationpolicy,meaningthatitalwayschoosestheactionwithmaximumQvalue.Thealgo-rithmbreakstiesbychoosingLeft.Whatarethe?rst10(state,action)pairsifour

5

机器学习考试卷 final2007s-solution 

10-701FinalExam,Spring20071.Personalinfo:?Name:?Andrewaccount:?E-mailaddress:2.Thereshouldbe16numberedpagesinthisexam(includingthiscoversheet).3.Youcanuseanymaterialyoub
推荐度:
点击下载文档文档为doc格式
4jinl3qqt65ap1c1kzfj507xn0uyj200qjy
领取福利

微信扫码领取福利

微信扫码分享