当且仅当r1?r2时,cosθ=0,∴θ?[0,?2] .
16. u解:PMuuur(Ⅰ)记P(x,y),由M(-1,0)N(1,0)得
??uMPuur?(?1?x,?y),PN??NP?(?1?x,?y), MN??NM?(2,0) . 所以 MP?MN?2(1?x) . PM?PN?x2?y2?1 , NM?NP?2(1?x) . 于是, MP?MN,PM?PN,NM?NP是公差小于零的等差数列等价于
???x2?y2?1?1
[2(1?x)?2(1?x)] 即 ?x2?y2?3)?2(1?x)?0? . ?2?2(1?x?x?0 所以,点P的轨迹是以原点为圆心,3为半径的右半圆. (Ⅱ)点P的坐标为(x20,y0)。PM?PN?x0?y20?1?2 .
uPMuuuruPNuur?(1?x22?x2?x2uuuur0)?yuuur0?(10)2?y0?(4?2x0)?(4?2x0)?240所以cos??uPM3, PMuuur?PN1?uPNuur??x. 因为 0〈x0?4201?112?cos??1,0????3,sin??1?cos2??1?14?x2,tan??sin??4?x20?3?x2y0cos?10?0.4?x20.
14.解:(1)设M(x,y),由uPMuur??3uMQuuur得:P(0,?y),Q(x,0) 由uHPuur?uPMuur223,
?0得:(3,?y2)(x,3y2)?0,即y2?4x,
由点Q在x轴的正半轴上,故x?0,
即动点M的轨迹C是以(0,0)为顶点,以(1,0)为焦点的抛物线,除去原点;
(2)设m:y?k(x?1)(k?0),代入y2?4x得:
k2x2?2(k2?2)x?k2?0…………①
设A(x1,y1),B(x2,y2),则x1,x2是方程①的两个实根,
则x2(k2?2)2?k21?x2??k2,x1x2?1,所以线段AB的中点为(k2,2k), 线段AB的垂直平分线方程为2y?2??1(x?2?kkk2),
k令y?0,x20??1,得E(2?1,0),
k2k2因为?ABE为正三角形,则点E到直线AB的距离等于32|AB|, 又|AB|?(x?x2241?k212)?(y1?y2)=k2?1?k2, 所以,231?k4?2k2|k|1?k2,解得:k??32,x110?3 .
所以