好文档 - 专业文书写作范文服务资料分享网站

2024年浙江新高考数学二轮复习专题强化练:专题三 3 第3讲 数列的综合问题

天下 分享 时间: 加入收藏 我要投稿 点赞

专题强化训练

1

1.(2024·台州市高三期末考试)在正项数列{an}中,已知a1=1,且满足an+1=2an-an+1(n∈N*).

(1)求a2,a3; 3-

(2)证明:an≥()n1.

2

1

解:(1)因为在正项数列{an}中,a1=1,且满足an+1=2an-(n∈N*),

an+113

所以a2=2×1-=,

1+123113

a3=2×-=.

235

+12

3-

(2)证明:①当n=1时,由已知a1=1≥()11=1,不等式成立;

23-

②假设当n=k时,不等式成立,即ak≥()k1,

21

因为f(x)=2x-在(0,+∞)上是增函数,

x+113-1

所以ak+1=2ak-≥2()k1- 23k-1ak+1

()+123131=()k+()k- 2323k-1

()+12132k-113k

()+()-1

323k32

=()+ 23k-1

()+1213k3

[()+3][2×()k-3]9223

=()k+, 23k-1

()+1233

因为k≥1,所以2×()k-3≥2×-3=0,

223

所以ak+1≥()k,

2

即当n=k+1时,不等式也成立. 根据①②知不等式对任何n∈N*都成立.

2.(2024·嘉兴调研)已知Sn为各项均为正数的数列{an}的前n项和,a1∈(0,2),a2n+3an

+2=6Sn.

(1)求{an}的通项公式;

1

(2)设bn=,数列{bn}的前n项和为Tn,若对任意的n∈N*,t≤4Tn恒成立,求实数

anan+1

t的最大值.

22

解:(1)当n=1时,由an+3an+2=6Sn,得a21+3a1+2=6a1,即a1-3a1+2=0.

又a1∈(0,2),解得a1=1.

2由a2n+3an+2=6Sn,可知an+1+3an+1+2=6Sn+1.

2两式相减,得a2n+1-an+3(an+1-an)=6an+1,即(an+1+an)(an+1-an-3)=0.

由于an>0,可得an+1-an-3=0,即an+1-an=3,

所以{an}是首项为1,公差为3的等差数列,所以an=1+3(n-1)=3n-2. (2)由an=3n-2 ,可得

11bn==

anan+1(3n-2)(3n+1)111

=?3n-2-3n+1?, 3??Tn=b1+b2+…+bn

11??1?1??11?-1-+-+…+?=?4??47?3???3n-23n+1?? =n

. 3n+1

13n1

因为Tn==-随着n的增大而增大,所以数列{Tn}是递增数列,

3n+133n+1tt1

所以t≤4Tn?≤Tn?≤T1=?t≤1,所以实数t的最大值是1.

444

1

3.(2024·金华模拟)已知数列{an}满足a1=,an+1an=2an+1-1(n∈N*),令bn=an-1.

2(1)求数列{bn}的通项公式;

a2n+17

(2)令cn=,求证:c1+c2+…+cn

a2n24

解:(1)因为an+1an=2an+1-1(n∈N*),bn=an-1,即an=bn+1. 11

所以(bn+1+1)(bn+1)=2(bn+1+1)-1,化为:-=-1,

bn+1bn1

所以数列{}是等差数列,首项为-2,公差为-1.

bn11所以=-2-(n-1)=-1-n,所以bn=-.

bnn+11n(2)证明:由(1)可得:an=bn+1=1-=.

n+1n+1

2n+1

a2n+12n+1+1(2n+1)2

所以cn===nn a2n2n2(2+2)

2n+1111

=1+?2n-2n+2?,

2??

因为n≥2时,2n+2≤2n1-1, 1111

所以n-n

22+22-12-1111?-+ 所以c1+c2+…+cn

11?1717

-n+1?=n+-

2?2-12-1?242(2n1-1)24

24.(2024·绍兴市高三教学质量调测)已知数列{an}满足an>0,a1=2,且(n+1)a2n+1=nan+

an(n∈N*).

(1)证明:an>1;

2

a2a292a3n

(2)证明:++…+2<(n≥2).

49n5

2

证明:(1)由题得(n+1)·a2n+1-(n+1)=nan-n+an-1,

故(an+1-1)(an+1+1)(n+1)=(an-1)(nan+n+1),

由an>0,n∈N*,可知(an+1+1)(n+1)>0,nan+n+1>0, 所以an+1-1与an-1同号,又a1-1=1>0,故an>1.

22(2)由(1)知an>1,故(n+1)a2n+1=nan+an<(n+1)an,

所以an+1<an,1<an≤2.

2又由题可得an=(n+1)a2n+1-nan,所以,

2222a1=2a2a22-a1,a2=3a3-2a2,…,an=(n+1)·n+1-nan,

相加得a1+a2+…+an=(n+1)a2n+1-4≤2n, 2n+42n+2所以a2,即a2(n≥2), n+1≤n≤nn+1

a222n?1-1?+?1-2+1?(n≥2). ≤+≤2

n2n2n3?n-1n??n-1nn+1?a2392

当n=2时,2=<.

245

2a2a33223192

当n=3时,2+2≤+2+3<+<.

234334352

a2a3a2a224n

当n≥4时,+++…+2 4916n

1111??1211?

<2??4+9+16+4?+?4+27+3-4?

211219=1+++++<.

98427125从而,原命题得证.

1

5.(2024·台州市高考一模)已知数列{an}满足:an>0,an+1+<2(n∈N*).

an(1)求证:an+2<an+1<2(n∈N*); (2)求证:an>1(n∈N*).

1

证明:(1)由an>0,an+1+<2,

an1

所以an+1<2-<2,

an因为2>an+2+

1an+1

≥2an+2

, an+1

所以an+2<an+1<2.

(2)假设存在aN≤1(N≥1,N∈N*), 由(1)可得当n>N时,an≤aN+1<1, 1an-1

根据an+1-1<1-=<0,而an<1,

anan1an1

所以>=1+.

an+1-1an-1an-111于是>1+,

aN+2-1aN+1-1…

11

>1+.

aN+n-1aN+n-1-1

11累加可得>n-1+(*),

aN+n-1aN+1-1由(1)可得aN+n-1<0,

11

而当n>-+1时,显然有n-1+>0,

aN+1-1aN+1-1因此有

11

<n-1+,

aN+n-1aN+1-1

这显然与(*)矛盾,所以an>1(n∈N*).

6.(2024·金丽衢十二校高三联考)已知fn(x)=a1x+a2x2+a3x3+…+anxn,且fn(-1)=(-1)n·n,n=1,2,3,….

(1)求a1,a2,a3;

(2)求数列{an}的通项公式;

(3)当k>7且k∈N*时,证明:对任意n∈N*都有成立.

22223

+++…+>an+1an+1+1an+2+1ank-1+12

解:(1)由f1(-1)=-a1=-1得a1=1, 由f2(-1)=-a1+a2=2,得a2=3, 又因为f3(-1)=-a1+a2-a3=-3, 所以a3=5.

(2)由题意得:fn(-1)=-a1+a2-a3+…+(-1)nan=(-1)n·n, fn-1(-1)=-a1+a2-a3+…+(-1)n1an-1 =(-1)n1·(n-1),n≥2, 两式相减得:

(-1)nan=(-1)n·n-(-1)n1·(n-1)=(-1)n(2n-1),

得当n≥2时,an=2n-1,又a1=1符合,所以an=2n-1(n∈N*). an+1

(3)证明:令bn==n,

2

11111111则S=+++…+=+++…+,

bnbn+1bn+2bnk-1nn+1n+2nk-1

11111111

所以2S=?n+nk-1?+?n+1+nk-2?+?n+2+nk-3?+…+?nk-1+n?.(*)

????????

11

当x>0,y>0时,x+y≥2xy,+≥2xy11?

所以(x+y)??x+y?≥4,

1, xy

114所以+≥,当且仅当x=y时等号成立,上述(*)式中,k>7,n>0,n+1,n+2,…,

xyx+y4n(k-1)4444

nk-1全为正,所以2S>+++…+=,

n+nk-1n+1+nk-2n+2+nk-3nk-1+nn+nk-1

22(k-1)2(k-1)?

所以S>>=21-k+1?

1??k+11+k-

n23

>2?1-7+1?=,得证. ??2

7.(2024·宁波市诺丁汉大学附中高三期中考试)已知数列{an}满足a1=3,an+1=a2n+2an,n∈N*,设bn=log2(an+1).

(1)求{an}的通项公式;

111(2)求证:1+++…+<n(n≥2);

23bn-1cn+1n

(3)若2cn=bn,求证:2≤()<3.

cn

22

解:(1)由an+1=a2n+2an,则an+1+1=an+2an+1=(an+1),

由a1=3,则an>0,两边取对数得到

2024年浙江新高考数学二轮复习专题强化练:专题三 3 第3讲 数列的综合问题

专题强化训练11.(2024·台州市高三期末考试)在正项数列{an}中,已知a1=1,且满足an+1=2an-an+1(n∈N*).(1)求a2,a3;3-(2)证明:an≥()n1.21解:(1)因为在正项数列{an}中,a1=1,且满足an+1=2an-(n∈N*),
推荐度:
点击下载文档文档为doc格式
4j2nv3fnrw3ibqw7s1xb7s7tu43p3900tnk
领取福利

微信扫码领取福利

微信扫码分享