1. x??3,2分别是方程x3?x2?8x?12?0 的根;讨论用Newton迭代法求它们近似值的收敛阶。取初值x0??2计算根x??3的近似值,要求迭代3次。(结果保留4位小数)解: 设 f(x)?x3?x2?8x?12 f?(x)?3x2?2x?8 f??(x)?6x?2 f(?3)?0,f?(?3)?0,f(2)?0,f?(2)?0,f??(2)?10?0 则:?3是f(x)?0的单根,故Newton迭代在?3附近是平方收敛; 2是f(x)?0的二重根,故Newton迭代在2附近是线性收敛; 取x0??2,Newton迭代:
32f(xn)xn?xn?8xn?12 xn?1?xn??xn?f?(xn)3x2?2x?822xn?3xn?6 ?3xn?422x0?3x0?6 x1??3x0?42x12?3x1?6 x2??3x1?422x2?3x2?6 x3??3x2?42. 设常数a?0 ,求出a的取值范围使得解方程组
?a?2?1??x1 ??2a?3?????x?????b1??b?22?
??13a????x3????b3?? 的Jacobi迭代法收敛。
解: Jacobi迭代:
x(k?1)?B(k)Jx?g
?a??1? B??0?2?1??J???a??20?3???1?0?2?1?20????a???130????3???130? ?a????1? g??a??a??b1???b?2? ?a?????b3?? 迭代矩阵BJ的特征方程:
????0?2??a?2 ?E?B?J??????1?1?20?3?1????a?????a2?a??130?13 即:(?a)3?14(?a)?0 特征根:??0,???14ai 谱半径:?(B14J)?a?1 时Jacobi迭代收敛 故:a?14
?1?3?0?a ?232??x1??5???????3. 设(1)用Crout三角分解法求解方程组 ?1034??x2???13? ;
?361??x??9????3??? (2)用乘幂法求方程组系数阵的按摸最大的特征值和对应的特征向量。(取v0?(0,0,1)T ,计算迭代三次的值)解: (1)Crout三角分解:
???131??? A??232????1??1034??2??2?1?????10?12??361????2??LU ?311???32?4????1???????131??2??2? L????10?12???,U??11????2??3?32?11?4?????1????? Ax?b???Ly?b?y
?UxT 求解Ly?b得y???5??2,1,0??
求解Ux?y得x??1,1,0?T (2) vv0?(0,0,1)T,u00?max(v??0,0,1?T 0)vTv11?Au0??2,4,1?,u1?max(v??0.5,1,0.25?T 1) vv2T2?Au1??,,?T,u2?max(v??0.5,1,0.8611? 2) vv33?Au2??,,?T,u3?max(v??0.5,1,0.7306?T,3)??1
??4??9??11.44 4. 试利用插值多项式证明:对k?0,1,?,n?2恒有等式
ik?0?(i?1)?(i?i?1)(i?i?1)?(i?n)i?1n证明: 设 xi?i,i?1,2,?,n f(x)?xk,k?0,1,?n?2
由插值多项式的唯一性,比较Lagrange与Newton插值最高项系数得: ?i?1nf(xi)?f[x1,?,xn]
(xi?x1)?(xi?xi?1)(xi?xi?1)?(xi?xn) 由差商与导数关系,有
f(n?1)(?) f[x1,?,xn]?,??[1,n](n?1)! 将xi?i,(i?1,2,?,n),f(x)?xk,(k?0,1,?n?2)代入上面两等式,有
nik ??0i?1(i?1)?(i?i?1)(i?i?1)?(i?n)ikf(n?1)(?)?f[x1,?,xn]??0?(i?1)?(i?i?1)(i?i?1)?(i?n)(n?1)!i?1n5. 求4次Hermit插值多项式H(x) ,满足:
H(0)?H?(0)?0,H(1)?H?(1)?1,H(2)?1 并写出误差表达式。
解: 方法一:因 H(0)?H?(0)?0,故设:H(x)?x2(a?bx?cx2) 由 H(1)?H?(1)?1,H(2)?1,得
?a?b?c?1 ??2a?3b?4c?1??a?2b?4c?1 得a?9314,b??2,c?4 H(x)?1x2(x?3)24 误差:E(x)?f(x)?H(x)?f(5)(?)5!x2(x?1)2(x?2), 方法一:满足H(0)?0,H(1)?H(2)?1的插值多项式为: p2(x)?32x?12x2 设:H(x)?p2(x)?(A?Bx)(x?0)(x?1)(x?2)H?(0)?3?2B?0, 由 2H?(1)?1 2?(A?B)?1得:由 A?134,B??4H(x)?32x?12x?14(x?3)(x?0)(x?1)(x?2)?1x2(x?3)24 误差:E(x)?f(x)?H(x)?f(5)(?)25!x(x?1)2(x?2),??(0,2)??(0,2)