解之得. 点评: 本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目. 10.解下列方程组: (1)
(2)
考点: 解二元一次方程组. 专题: 计算题. 分析: 此题根据观察可知: (1)运用代入法,把①代入②,可得出x,y的值; (2)先将方程组化为整系数方程组,再利用加减消元法求解. 解答: 解:(1), 由①,得x=4+y③, 代入②,得4(4+y)+2y=﹣1, 所以y=﹣, 把y=﹣代入③,得x=4﹣=. 所以原方程组的解为. (2)原方程组整理为, ③×2﹣④×3,得y=﹣24, 把y=﹣24代入④,得x=60, 所以原方程组的解为. 点评: 此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强
化和运用. 11.解方程组:
(1)
(2)
考点: 解二元一次方程组. 专题: 计算题;换元法. 分析: 方程组(1)需要先化简,再根据方程组的特点选择解法; 方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答: 解:(1)原方程组可化简为, 解得. (2)设x+y=a,x﹣y=b, ∴原方程组可化为, 解得, ∴ ∴原方程组的解为. 点评: 此题考查了学生的计算能力,解题时要细心. 12.解二元一次方程组: (1)
;
6
(2). 考点: 解二元一次方程组. 专题: 计算题. 分析: (1)运用加减消元的方法,可求出x、y的值; (2)先将方程组化简,然后运用加减消元的方法可求出x、y的值. 解答: 解:(1)将①×2﹣②,得 15x=30, x=2, 把x=2代入第一个方程,得 y=1. 则方程组的解是; (2)此方程组通过化简可得:, ①﹣②得:y=7, 把y=7代入第一个方程,得 x=5. 则方程组的解是. 点评: 此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用. 13.在解方程组
时,由于粗心,甲看错了方程组中的a,而得解为
,乙看错了方
程组中的b,而得解为.
(1)甲把a看成了什么,乙把b看成了什么? (2)求出原方程组的正确解. 考点: 解二元一次方程组. 专题: 计算题. 分析: (1)把甲乙求得方程组的解分别代入原方程组即可; (2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组. 解答: 解:(1)把代入方程组,
得, 解得:. 把代入方程组, 得, 解得:. ∴甲把a看成﹣5;乙把b看成6; (2)∵正确的a是﹣2,b是8, ∴方程组为, 解得:x=15,y=8. 则原方程组的解是. 点评: 此题难度较大,需同学们仔细阅读,弄清题意再解答. 14.
考点: 解二元一次方程组. 分析: 先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答: 解:由原方程组,得 , 由(1)+(2),并解得 x=(3), 把(3)代入(1),解得 y= 7
∴原方程组的解为. 点评: 用加减法解二元一次方程组的一般步骤: 1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等; 2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程; 3.解这个一元一次方程; 4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解. 15.解下列方程组: (1)
;
(2).
考点: 解二元一次方程组. 分析: 将两个方程先化简,再选择正确的方法进行消元. 解答: 解:(1)化简整理为, ①×3,得3x+3y=1500③, ②﹣③,得x=350. 把x=350代入①,得350+y=500, ∴y=150. 故原方程组的解为. (2)化简整理为, ①×5,得10x+15y=75③, ②×2,得10x﹣14y=46④, ③﹣④,得29y=29, ∴y=1. 把y=1代入①,得2x+3×1=15, ∴x=6. 故原方程组的解为. 点评: 方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.
16.解下列方程组:(1)
(2)
考点: 解二元一次方程组. 分析: 观察方程组中各方程的特点,用相应的方法求解. 解答: 解:(1)①×2﹣②得:x=1, 将x=1代入①得: 2+y=4, y=2. ∴原方程组的解为; (2)原方程组可化为, ①×2﹣②得: ﹣y=﹣3, y=3. 将y=3代入①得: x=﹣2. ∴原方程组的解为. 点评: 解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解. 8