欧阳科创编 2021.02.05 【宇宙中的双星及多星问题】 时间:2021.02.05 创作:欧阳科 宇宙中,因天体间的相互作用而呈现出诸如双星、三星、四星及多星系统组成的自然天文现象,天体之间相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星
运动的三条基本规律。
现代实验观测表明,在天体运动中,将两颗彼此距离较近而绕同一点做圆周运动的行星称为双星模型。而三星、四星等多星模型则是指彼此相互依存和相互作用且围绕某一点作圆周运动的行星。多星系统问题的求解方法仍然是建立万有引力方程和牛顿第二定律方程。
由于多星间的引力和运动情况特殊性,从而产生了很多有趣的天文现象。 一、双星问题
近年来,天文学家们发现,大部分已知恒星都存在于双星甚至多星系统中。双星对于天体物理尤其重要,因为两颗星的质量可从通过观测旋转轨道确定。这样,很多独立星体的质量也可以推算出来。
欧阳科创编 2021.02.05
在银河系中,双星的数量非常多,估计不少于单星。研究双星,不但对于了解恒星形成和演化过程的多样性有重要的意义,而且对于了解银河系的形成和演化,也是一个不可缺少的方面。双星系统具有如下特点:
(1)它们以相互间的万有引力来提供向心力。 (2)它们共同绕它们连线上某点做圆周运动。 (3)它们的周期、角速度相同。
例题1:(2013?山东)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,DC运动的周期为( )
解:设m1的轨道半径为R1,m2的轨道半径为R2.由于它们之间的距离恒定,因此双星在空间的绕向一定相同,同时角速度和周期也都相同.由向心力公式可得:
例题2:(2008?宁夏)天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一
欧阳科创编 2021.02.05
固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G) 解:设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,角速度分别为ω1,ω2.根据题意有ω1=ω2①r1+r2=r②根据万有引力定律和牛顿定律,有 二、三星问题
三星问题有两种情况:
第一种情况三颗星连在同一直线上,两颗星围绕中央的星(静止不动)在同一半径为R的圆轨道上运行,周期相同;
第二种情况三颗星位于等边三角形的三个顶点上,并沿等边三角形的外接圆轨道运行,三颗星运行周期相同。 1、第一种情况:
例题3:宇宙中有这样一种三星系统,系统由两个质量为m的小星体和一个质量为M的大星体组成,两个小星体围绕大星体在同一圆形轨道上运行,轨道半径为r.关于该三星系统的说法中正确的是( )
A.在稳定运行的情况下,大星体提供两小星体做圆周运动的向心力
B.在稳定运行的情况下,大星体应在小星体轨道中心,两小星体在大星体相对的两侧
解:A、在稳定运行的情况下,某一个环绕星而言,受到两个星的万有引力,两个万有引力的合力提供环绕星做圆周运