全日制普通高级中学数学教学大纲
全日制普通高级中学数学教学大纲(最新版)
数学是研究空间形式和数量关系的科学。数学能够处理数据、观测资料,进行计算、推理和证明,可提供自然现象、社会系统的数学模型。随着社会的发展,数学的应用越来越广泛。它已经成为人们参加社会生活、从事生产劳动的需要。它是学习和研究现代科学技术的基础;它在培养和提高思维能力方面发挥着特有的作用;它的内容、思想、方法和语言已成为现代文化的重要组成部分。
高中数学是义务教育后普通高级中学的一门主要课程。它是学习物理、化学、计算机和进一步学习的必要基础,也是参加社会生产、日常生活的基础,对于培养学生的创新意识和应用意识,认识数学的科学和文化价值,形成理性思维有积极作用。因此,使学生在高中阶段继续受到数学教育,提高数学素养,对于提高全民族素质,为培养社会主义现代化建设所需要的人才打好基础是十分必要的。 一、教学目的
高中数学教学应该在9年义务教育数学课程的基础上进一步做到:
使学生学好从事社会主义现代化建设和进一步学习所必需的代数、几何、概率统计、微积分初步的基础知识、基本技能,以及其中的数学思想方法。
在数学教学过程中注重培养学生数学地提出问题、分析问题和解决问题的能力,发展学生的创新意识和应用意识,提高学生数学探究能力、数学建模能力和数学交流能力,进一步发展学生的数学实践能力。
努力培养学生数学思维能力,包括:空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明、体系构建等诸多方面,能够对客观事物中的数量关系和数学模式作出思考和判断。
激发学生学习数学的兴趣,使学生树立学好数学的信心,形成实事求是的科学态度和锲而不舍的钻研精神,认识数学的科学价值和人文价值,从而进一步树立辩证唯物主义的世界观。
二、教学内容的确定和安排
高中数学教学内容应精选那些在现代社会生活、生产和科学技术中有着广泛应用的,为进一步学习所必需的,在理论上、方法上、思想上是最基本的,同时又是学生所能接受的知识。在内容安排上,既要注意各部分知识的系统性,注意与其他学科的相互配合,更要注意符合学生的认识规律,还要注意与义务教育初中数学内容相衔接。高中
第 1 页 共 16 页
全日制普通高级中学数学教学大纲
数学分必修课、选修课,选修课包括选修Ⅰ和选修Ⅱ。必修课总计280课时,选修Ⅰ总计52课时,选修Ⅱ总计104课时。学校根据教学实际自行安排必修课、选修课的开设。每学期至少安排一个研究性课题。 三、教学内容和教学目标 必修课
1.平面向量(12课时)
向量。向量的加法与减法。实数与向量的积。平面向量的坐标表示。线段的定比分点。平面向量的数量积。平面两点间的距离。平移。 教学目标
(1)理解①向量的概念,掌握向量的几何表示,了解共线向量的概念。 ①(注):本大纲阐述教学目标分为了解、理解、掌握、灵活运用等四个层次,其含义参照《九年义务教育全日制初级中学数学教学大纲(试用)》(1995年第2版)的提法:
(1)了解:对知识的含义有感性的、初步的认识.能够说出这一知识是什么,能够(或会)在有关的问题中识别它。
(2)理解:对概念和规律(定律、定理、公式、法则等)达到了理性认识,不仅能够说出概念和规律是什么,而目能够知道它是怎样得出来的,它与其他概念和规律之间的联系,有什么用途。
(3)掌握:一般地说,是在理解的基础上,通过练习,形成技能,能够(或会)用它在解决一些问题。
(4)灵活运用:是指能够综合运用知识并达到了灵活的程度,从而形成了能力。 (2)掌握向量的加法与减法。
(3)掌握实数与向量的积,理解两个向量共线的充要条件。
(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
(6)掌握平面两点间的距离公式,掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。
第 2 页 共 16 页
全日制普通高级中学数学教学大纲
2.集台、简易逻辑(14课时) 集合。子集。补集。交集。并集。 逻辑联结词。四种命题。充要条件。 教学目标
(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
(2)理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;掌握充要条件的意义。 3.函数(30课时)
映射。函数。函数的单调性。
反函数。互为反函数的函数图象间的关系。
指数概念的扩充。有理指数幂的运算性质。指数函数。 对数。对数的运算性质。对数函数。 函数的应用举例。 实习作业。 教学目标
(1)了解映射的概念,在此基础上加深对函数概念的理解。
(2)了解函数单调性的概念,掌握判断一些简单函数单调性的方法。
(3)了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数。
(4)理解分数指数的概念,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质。
(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图象和性质。 (6)能够运用函数的性质、指数函数、对数函数的性质解决某些简单的实际问题。 (7)实习作业以函数应用为内容,培养学生应用函数知识解决某些实际问题的能力。
4.不等式(22课时)
不等式。不等式的基本性质。不等式的证明。不等式的解法、含绝对值的不等式。
第 3 页 共 16 页
全日制普通高级中学数学教学大纲
教学目标
(1)理解不等式的性质及其证明。
(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理。并会简单的应用。
(3)掌握分析法、综合法、比较法证明简单的不等式。
(4)掌握二次不等式、简单的绝对值不等式和简单的分式不等式的解法。 (5)理解不等式
|a|-|b|≤|a+b|≤|a|+|b| 5.三角函数(46课时) 角的概念的推广、弧度制。
任意角的三角函数。单位圆中的三角函数线。同角三角函数的基本关系式。正弦、余弦的诱导公式。两角和与差的正弦、余弦、正切。二倍角的正弦、余弦、正切。 正弦函数、余弦函数的图象和性质。周期函数、函数的奇偶性。函数y=Asin(ωx+φ)的图象。正切函数的图象和性质。已知三角函数值求角。 正弦定理。余弦定理。斜三角形解法举例。 实习作业。 教学目标
(1)理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。 (2)掌握任意角的正弦、余弦、正切的定义,并会利用单位圆中的三角函数线表示正弦、余弦和正切;了解任意角的余切、正割、余割的定义;掌握同角一角函数的基本关系式:掌握正弦、余弦的诱导公式。
(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力。 (4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明(包括引出积化和差、和差化积、半角公式,但不要求记忆)。
(5)会用单位圆中的三角函数线画出正弦函数、正切函数的图象,并在此基础上由诱导公式画出余弦函数的图象;了解周期函数与最小正周期的意义;了解奇偶函数的定义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质以及简化这些函数图象的绘制过程;会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简
第 4 页 共 16 页
全日制普通高级中学数学教学大纲
图,理解A、ω、φ的物理意义。
(6)会由已知三角函数值求角,并会用符号arcsinx、arccosx、 arctanx表示。 (7)掌握正弦定理、余弦定理,并能运用它们解斜二角形,能利用计算器解决解斜三角形的计算问题。
(8)通过解三角形的应用的教学,提高运用所学知识解决实际问题的能力。 (9)实习作业以测量为内容,培养学生应用数学知识解决实际问题的能力和实际操作的能力。
6.数列(12课时) 数列。
等差数列及其通项公式。等差数列前n项和公式。 等比数列及其通项公式。等比数列前n项和公式。 教学目标
(1)理解数列的概念,了解数列通项公式的意义;了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。
(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。
7.直线和圆的方程(22课时)
直线的倾斜角和斜率。直线方程的点斜式和两点式。直线方程的一般式。 两条直线平行与垂直的条件。两条直线的交角。点到直线的距离。 用二元一次不等式表示平面区域。简单线性规划问题。 实习作业。
曲线与方程的概念。由已知条件列出曲线方程。 圆的标准方程和一般方程。圆的参数方程。 教学目标
(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握由一点和斜率导出直线方程的方法;掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程。
第 5 页 共 16 页