2020年四川省绵阳市江油外国语学校中考数学一模试卷
一、选择题(共10小题,每题3分,共30分) 1.(3分)2020的相反数是( ) A.2020
B.﹣2020
C.
D.
2.(3分)2018年我国大学生毕业人数将达到8200000人,这个数据用科学记数法表示为( ) A.8.2×107
B.8.2×106
C.82×105
D.0.82×107
3.(3分)如图是由7个大小相同的小正方体搭成的几何体,从左面看到的几何体的形状图是( )
A. B. C. D.
4.(3分)有一组数据:2,0,2,1,﹣2,则这组数据的中位数、众数分别是( ) A.1,2
B.2,2
C.2,1
D.1,1
5.(3分)下列交通标志是中心对称图形的为( )
A. B. C. D.
6.(3分)不等式3x≤2(x﹣1)的解集为( ) A.x≤﹣1
B.x≥﹣1
C.x≤﹣2
D.x≥﹣2
7.(3分)已知△ABC∽△DEF,若△ABC与△DEF的相似比为2:3,△ABC的面积为40,则△DEF的面积为( ) A.60
B.70
C.80
D.90
8.(3分)如图,在△ABC中,BD平分∠ABC,DE∥BC,且交AB于点E,∠A=60°,∠BDC=86°,则∠BDE的度数为( )
A.26° B.30° C.34° D.52°
9.(3分)关于一元二次方程x2﹣2x+1﹣a=0无实根,则a的取值范围是( ) A.a<0
B.a>0
C.a<
D.a>
10.(3分)如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A﹣B﹣C﹣O的路线匀速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是( )
A. B.
C. D.
二、填空题(共7小题,每题4分,共28分)
11.(4分)已知扇形的弧长是3π,半径是3,则扇形的圆心角度数是 . 12.(4分)分解因式:x2﹣16y2= .
13.(4分)若3﹣a和2a+3都是某正数的平方根,则某数为 . 14.(4分)若
+(3m﹣n)2=0,则n﹣m= .
15.(4分)已知抛物线y=ax2+bx+c(a≠0)与x轴、y轴分别相交于A(﹣1,0)、B(3,0)、C(0,3)三点.则该抛物线的解析式是 .
16.(4分)如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为 .(结果保留π)
17.(4分)如图,△P1OA1,△P2A1A2,△P3A2A3,…,是等腰直角三角形,点P1,P2,P3,…,在反比例函数y=
的图象上,斜边OA1,A1A2,A2A3,…都在x轴上,则点A2的坐标是 .
三、解答题(共3小题,每题6分,共18分) 18.(6分)计算:2cos30°﹣(﹣2017)0+|19.(6分)先化简,再求值:(20.(6分)如图,在△ABC中:
(1)用直尺和圆规,在AB上找一点D,使点D到B、C两点的距离相等(不写作法.保留作图痕迹) (2)连接CD,已知CD=AC,∠B=25°,求∠ACB的度数.
)÷
﹣2|+(﹣
)1
﹣
,其中x=.
四、解答题(共3小题,每题8分,共24分)
21.(8分)在一个不透明的袋子中,装有除颜色外其余均相同的红、蓝两种球,已知其中红球有3个,且从中任意摸出一个红球的概率为0.75.
(1)根据题意,袋中有 个蓝球;
(2)若第一次随机摸出一球,不放回,再随机摸出第二个球,请用画树状图或列表法求“摸到两球中至少一个球为蓝球(记为事件A)”的概率P(A).
22.(8分)近些年全国各地频发雾霾天气,给人民群众的身体健康带来了危害,某商场看到商机后决定购进甲、乙两种空气净化器进行销售.若每台甲种空气净化器的进价比每台乙种空气净化器的进价少300元,且用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同. (1)求每台甲种空气净化器、每台乙种空气净化器的进价分别为多少元?
(2)若该商场准备进货甲、乙两种空气净化器共30台,且进货花费不超过42000元,问最少进货甲种空气净化器多少台?
23.(8分)如图,在?ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°. (1)求证:四边形ABCD是矩形;
(2)若AB=14,DE=8,求sin∠AEB的值.
2020年四川省绵阳市江油外国语学校中考数学一模试卷
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)