郭甜甜 等
参考文献
[1] 马本学, 应义斌, 饶秀勤, 等. 高光谱成像在水果内部品质无损检测中的研究进展[J]. 光谱学与光谱分析, 2009,
29(6): 1611-1615. [2] 王涛, 裘正军, 张卫正, 等. 基于拉曼光谱技术的枇杷果实β-胡萝卜素含量无损测定研究[J]. 光谱学与光谱分析,
2016, 36(11): 3572-3577. [3] 马毅, 汪西原. 基于近红外光谱无损检测的水果品质定量分析与预测[J]. 农业科学研究, 2010, 31(3): 16-20. [4] 孟凡坤, 熊刚, 宋世远. 近红外光谱在油料低温性能检测中的应用[J]. 当代化工, 2018(7): 1529-1532.
[5] Yuan, L.M., Mao, F., Chen, X.J., et al. (2020) Non-Invasive Measurements of “Yunhe” Pears by Vis-NIRS Technology
Coupled with Deviation Fusion Modeling Approach. Postharvest Biology and Technology, 160, Article No. 111067. https://doi.org/10.1016/j.postharvbio.2019.111067 [6] Yuan, L.M., Sun, L.I., Cai, J.R., et al. (2015) A Preliminary Study on Whether the Soluble Solid Content and Acidity
of Oranges Predicted by Near Infrared Spectroscopy Meet the Sensory Degustation. Journal of Food Process Engi-neering, 38, 309-319. https://doi.org/10.1111/jfpe.12104 [7] Bai, Y.H., Xiong, Y.J., Huang, J.C., et al. (2019) Accurate Prediction of Soluble Solid Content of Apples from Mul-tiple Geographical Regions by Combining Deep Learning with Spectral Fingerprint Features. Postharvest Biology and Technology, 156, Article No. 110943. https://doi.org/10.1016/j.postharvbio.2019.110943
DOI: 10.12677/oe.2020.102006
51
光电子