v3?a2xt3?12? z1?2?a2xt2? 2?2?竖直方向匀加速运动
2v2?0?2a2yh2 v2?a2yt2
解得
22hzv2v2 , t2?2,a2x?12 a2y?v4h2h222精避障段:精细避障段的区间是距离月面100m到30m。要求嫦娥三号悬停在距
离月面100m处,对着陆点附近区域100m范围内拍摄图像,并获得三维数字高程图,如图(3)所示,
图(3)距月面100米处仿真图
在该阶段除了继续使用灰度阀值外,我们还使用了螺旋式搜索法,对高程图进行坡度值的判定,坡度定义为水平面与局部地表之间的正切值,结果与阀值分割发等到的结果一致,更准确的找到了着陆区,同时也说明了阀值分析的可行性,所得结果如图(4)图(5)所示。
10
图(4)距月面100米处阀值分割处理图
图(5)距月面100米螺旋算法搜索理图
分析三维数字高程图,避开较大的陨石坑,确定最佳着陆地点,实现在着陆点上方30m处水平方向速度为0m/s。如上投影的中心下方为预定着陆点,以此
??为中心,设此点的坐标为?x1,y1?建立坐标系选取平坦区域?x3,y3?,原点距离它?的水平距离为z??x3?x1???y3?y1??
F3x?a?3x??m在这个阶段的加速度为?
?a?F3y?g3y?m? 11
水平方向速度变量为零,则
?水平位置的变化
t30a3x??v3?0
??a00t3t3xdtdt?z2
竖直方向速度变化
?竖直位置的变化
t3t30a3ydt?v3y
??a00t3ydtdt?h3
缓速下降阶段:缓速下降阶段的区间是距离月面30m到4m。该阶段的主要任务控制着陆器在距离月面4m处的速度为0m/s,即实现在距离月面4m处相对月面静止,即控制推力F4保持不变,匀减速直线运动,使嫦娥三号自由落体到精确有落月点。 加速度为
a4x?F4?g m2v4?2a4xh4
即可求解出a4x及F4 自由落体阶段
最后以加速度为g自由落体,所用时间为t5?2h5,结束时速度为gv5?2gh5 3、问题三:
误差分析是建模过程不可避免的,在建模的各个阶段,都会产生一定的误差,所以本文将从建模的各个阶段本名说明本文的模型存在的误差,和产生误差的原因。
12
建模准备期:数据的测量收集和处理过程会产生误差,因为设计到月球和飞行器,远离地球的工作过程,就是是USB等先进测量仪器都无法保证所得的数据结果准确无误,所以在原始数据的收集处理上就会产生误差。还有是作者对数据的处理,文中涉及的数据都是很大的数,在使用科学计数法处表示时,需要舍去低位数,这也是产生误差的原因之一。
建模过程:建模过程的计算,会把很多的结果进行四舍五入,方便计算,文中涉及大量数据计算,这样累加的结果就会 产生较大的影响。
以上是大部分建模会出现的不可避免的误差,接下来讨论本文特殊的误差,主要是摄动力误差:真实动力学模型除包括地球的中心引力外,还考虑以下的摄动因素:地球重力场; 体摄动;太阳、月球的引力摄动;木星、水星、金星等大行星的引力摄动;固体潮摄动;地球率的间接效应;太阳光压摄动;大气阻力摄动等因素。由于在天文方面的欠缺,虽然在建模前意识到了这个问题,但是没有考虑进去,后来在多方努力下查阅资料得到地球等行星对绕月卫星的摄动力影响虽然都在10?5以下级别(地球质点引力摄动10?5,太阳质点引力摄动10?7,月球扁率与地球引力之间引起的间接摄动10?11),但是本文仍然认为没有考虑摄动力也是对建模结果误差的影响因素之一。还有在飞行器避障处理中,没有很好确定准确的经纬度,在坐标与经纬度的转化方面没有做好。导致结果也会产生误差。 避免误差的方法:飞行器全面的受力情况,利用天文学知识,更好去分析。综合各学科知识,灵活应用。 灵敏度分析:
局部灵敏度分析检验单个参数的变化对模型运行结果总的影响,本文的轨道模型有多个参数影响,所以采用全局灵敏度分析,分析当近月点位置,推力大小,速度等因素对着陆区域的影响,和着陆过程燃料消耗的影响。
整个模型的参数有很多,如果每个参数都进行全局灵敏度分析,必然导致计算量增加;另一方面,众多的模型参数对模型的影响程度是不一样的,对与那些影响程度较小的参数,完全没有必要进行全局灵敏度分析,因此,如果将全局灵敏度分析和局部灵敏度分析结合起来,就能取得事半功倍的效果,所以进行局部灵敏度分析,确定主要参数对模型性能的影响程度,对于那些对模型性能影响大的参数,进行全局灵敏度分析。本文实现灵敏度分析的方法是,分析某一个参数时,不考虑其他因素,即视为常数,对结果进行计算比较。通过计算所有参数发现,嫦娥三号的近月点位置,和在着陆轨道上的推力对结果的影响最大。
七、模型评价
优点:
1多方面结合考虑,将开普勒定律与机械能公式相结合建立方程组,精确得到近月点远月点速度。
2用类比法将嫦娥三号与月球类比成卫星与地球,利用卫星轨迹模型得出嫦娥三号椭圆轨道上的近月点和远月点经纬度。
13
3多方面考虑细节问题,表达出燃料损耗对嫦娥三号质量的影响,
4分段处理嫦娥三号软着陆轨道,过程简洁明了,水平竖直两方面同时进行,清晰的表达出整个力学运动。
缺点:
1求解近月点远月点位置的坐标时,公式太过繁琐,错误率太高。 2没有考虑月球自传,对结果造成一定影响
参考文献
[1]和兴锁,林胜勇张亚锋,低高度环月卫星轨道摄动分析和计算\西北工业大学工程力学系!陕西西安710072’ [2]宋政吉, 耿殿伍 , 姜兴渭,一种基于高程图的危险区识别算法
[3]王鹏基,张熇,曲广吉,月球软着陆飞行动力学和制导控制建模与仿真 ,中国 科学中国科学E辑:技术科学2009年第39卷第3期:521-527 [4]王建伟,李兴,近日点和远月点速度的两种典型解法,物理教师,276100:1-1, 2013年
[5]蒋瑞 韩兵,嫦娥三号着陆控制研究与软件仿真,研究与设计,1007-575X (2012)2-0017-03:17-34,2012
14