数学思想方法与初中数学教学——分类讨论专题
数学思想方法在初中数学教学中的重要性
在《初中数学课程标准》的总体目标中,明确地提出了:“通过义务教育阶段的数学学习,学生应能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能”。新课程把基本的数学思想方法作为基础知识的重要组成部分,在数学课程标准中明确地提出来,这不仅是课程标准体现义务教育性质的重要表现,也是对学生实施创新教育、培养创新思维的重要保证。
什么是数学思想方法?数学思想是对数学知识和方法本质的认识,是解决数学问题的根本策略,它直接支配着数学的实践活动;数学方法是解决问题的手段和工具,是解决数学问题时的程序、途径,它是实施数学思想的技术手段。数学思想带有理论性特征,而数学方法具有实践性的特点,数学问题的解决离不开以数学思想为指导,以数学方法为手段。数学思想方法是从数学内容中提炼出来的数学学科的精髓,是数学素养的重要内容之一,数学思想方法揭示了概念、原理、规律的本质,是沟通基础与能力的桥梁。
在初中数学教学中,常见的数学思想有:转化思想、方程思想、数形结合思想、分类讨论思想等等;常见的数学方法有:待定系数法、配方法、换元法、分析法、综合法、类比法等等。
在初中数学教学中,渗透数学思想方法,可以克服就题论题,死套模式,数学思想方法可以帮助我们加强思路分析,寻求已知和未知的联系,提高分析解决问题的能力,从而使思维品质和能力有所提高。提高学生的数学素质、必须紧紧抓住数学思想方法这一重要环节,因为数学思想方法是提高学生的数学思维能力和数学素养的重要保障。
在初中数学教材中集中了大量的优秀例题和习题,它们所体现的数学知识和数学方法固然重要,但其蕴涵的数学思想却更显重要,作为初中数学教师,要善于挖掘例题、习题的潜在功能。在初中数学教学中,教师应向学生提供充分从事数学活动的机会,帮助学生在自主探索和合作交流的过程中,真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。学生只有领会了数学思想方法,才能有效地应用知识,形成能力,从而为解决数学问题、进行数学思维起到很好的促进作用。因此,在初中数学教学中,教师必须重视对学生进行数学思想方法的渗透与培养。
我下面主要对分类讨论思想做一下分析
分类讨论思想是自然科学乃至社会科学研究中的基本逻辑方法,当被研究的问题包含多种可能的情况不能一概而论时,就要按照可能出现的各种情况进行分类讨论,从而得出各种情况下的结论,这种处理问题的思维方法就是分类讨论思想。
分类思想已渗透到中学数学的各个方面,如概念的定义、定理的证明、法则的推导等,也渗透到问题的具体解决之中,如含有绝对值符号的代数式的处理、根式的化简、图形的讨论等,这些问题若不分类讨论,就会无从着手或顾此失彼,导致错误的发生。比如,在有关绝对值的概念中,当去掉绝对值符号时,便要把绝对值内的字母分大于0,小于0,等于 0三种情况进行讨论;若已知=3,或
,
=2,求
的值。在解这道题时,由
=3,得到
或,
,由时,
=2,得到的值为5;当,
时,
。因此,对于
时,
的取值,应分四种情况讨论,当的值为1;当
,
时,
的值为-1;当
的值为-5,即的值为5;1;-1;-5。在解这个数学问题时,由于它的结果可能不唯
一,因此需要对可能出现的情况一一加以讨论。在运用分类讨论思想研究问题时,必须做到“不重、不漏”,而且要按照相同的标准进行讨论,只有掌握了分类讨论思想,在解题时才不会出现漏解的情况。
在渗透分类讨论思想的过程中,首要的是分类。教师要培养学生分类的意识,然后才能引导学生在分类的基础上进行讨论。我们仔细分析教材的话应该不难发现,教材对于分类讨论思想的渗透是一直坚持而又明显的。比如在研究相反数、绝对值、有理数的乘法运算的符号法则等都是按有理数分成正数、负数、零三类分别研究的;在研究加、减、乘、除四种运算法则时也是按照同号、异号、与零运算这三类分别研究的;而在初中几何教学中,用分类讨论思想进行了角的分类、点和直线的位置关系的分类、两条直线位置关系的分类;在函数教学中将函数图象分为开口方向向上、向下,自变量的增、减来进行研究;在圆的教学中按圆心距与两圆半径之间的大小关系将两圆的位置关系进行了分类。从功能上看,这种分类讨论思想可以避免漏解、错解情况的出现,从学生的思维品质上看,分类讨论思想有利于培养学生的思维严谨性与逻辑性。渗透分类讨论的思想方法,对培养学生全面观察事物、灵活处理问题的能力有积极促进作用。
下面我以冀教版九年级数学上册第27章第2节 “圆周角”的教学为例,谈一谈教学中的一
些设计与感受。
1.教学背景分析
本节课是在学生掌握了圆的有关概念、圆的对称性、圆心角等知识的基础上,重点研究圆周角的概念以及圆周角定理,圆周角不仅与圆心角之间关系十分密切,而且在进行角的有关计算、证明角相等、弧相等、弦相等、研究圆内接四边形、判定相似三角形等常见几何问题中具有重要的作用,尤其是利用完全归纳法探索圆周角定理的过程,对培养学生分类讨论、转化等数学思想方法以及从特殊到一般的认知规律具有促进作用。因此,我确定了本节课的教学重点是:圆周角的概念和圆周角定理。