好文档 - 专业文书写作范文服务资料分享网站

变系数常微分方程的解法探讨 

天下 分享 时间: 加入收藏 我要投稿 点赞

目 录

1 引言 ...................................................................... 1 2 一阶变系数常微分方程的解法探讨 ............................................ 1 2.1 变系数一阶微分方程的几个可积类型 ...................................... 1 2.2 应用举例 .............................................................. 4 3 二阶变系数线性微分方程的解法探讨 ......................................... 5 3.1 用求特解的方法求二阶变系数线性微分方程的解 ............................ 6 3.1.1 对变系数线性二阶微分方程 特解的探索 ..... 6 3.1.2 确定 的通解 ............................. 7 3.1.3 用常数变易法确定 的特解 ............................ 8 3.1.4 应用举例 ........................................................... 8 3.2 二阶变系数线性微分方程的积分因子解法 .................................. 9 3.2.1 关于二阶变系数线性微分方程的积分因子的一些结论 ..................... 9 3.2.2 讨论如何求出 , ........................................... 10 3.2.3 应用举例 .......................................................... 10 3.3 二阶线性变系数常微分方程的常系数化解法 ............................... 11 3.3.1 利用自变量的变换实现常系数化 ...................................... 11 3.3.2 利用未知函数的齐次线性变换实现常系数化 ............................ 12 3.3.3 应用举例 .......................................................... 13 4 三阶变系数线性微分方程的解法探讨 ......................................... 14 4.1 方程(4.1)化为常系数方程的一种充要条件 .............................. 14 4.2 应用举例 ............................................................. 16 结束语 ..................................................................... 17 参考文献 ................................................................... 17 致谢 ....................................................................... 17

变系数常微分方程的解法探讨

数学计算机学院数学与应用数学专业2013届 余小艳

摘 要:求变系数常微分方程的解,迄今为止没有一种确定的方法. 本文通过寻找特解和变量代换等方法得到了一些新的求解一类二阶变系数线性微分方程通解的方法,并讨论了一阶变系数线性微分方程和三阶变系数线性微分方程化为常系数方程的几个充要条件. 又举例说明了这些方法的可行性,有效扩充了变系数微分方程可解范围. 关键词:变系数常微分方程;二阶变系数微分方程;通解;变量变换 中图分类号:O175.1

Discussion on the Solution of Ordinary Differential Equation

with Variable Coefficient

Abstract: So far, there hasn’t been an established method on how to solve Ordinary Differential Equation (ODE) with Variable Coefficients. This paper presents some methods of solving the second order linear ODE with variable coefficients by means of searching special solution and variable transformation, etc. This paper also gives an introduction to the necessary and sufficient conditions of first order linear ODE and 3 rd order linear ODE with variable coefficient that can be translated into constant coefficients. Moreover, we give some examples to illustrate the feasibility of these methods. Hence, the results effectively extend the solvable for the variable coefficient differential equations.

Key words: variable coefficients ordinary differential equations;second order differential equations with variable coefficients;general solutions;variable transformation

变系数常微分方程的解法探讨

1 引言

常微分方程已经成为数学领域中一项十分重要的学科,并且在求解问题,模型,指导实践中有着极为广泛的应用. 二阶变系数线性常微分方程是常微分方程中一类常见的方程,但迄今为止,二阶变系数常微分方程的通解问题在数学领域内并没有解决. 变系数线性微分方程在自然科学与工程技术中有着广泛的应用,因此,研究变系数线性微分方程的求解方法,具有重要的理论意义和应用价值.

众所周知,变系数一阶微分方程具有一般的解法,由于在理论研究和实际应用中出现有大量的二阶及三阶以上的高阶变系数线性微分方程,因此,近年来数学领域内对高阶变系数线性微分方程求解方程的研究,并取得了一些成果. 本文在总结变系数一阶常微分方程解法的同时,着重就二阶及三阶变系数线性微分方程的求法进行了探讨,最后又给出了这些解法的应用及推广.

2一阶变系数常微分方程的解法探讨

2.1变系数一阶微分方程的几个可积类型

对于一阶常微分方程我们常用解法有:分离变量法,变量替换法,积分因子法 ,常数变易法等.在此,主要讨论变系数一阶微分方程的几个可积类型.

为确定起见,在以下讨论中规定一般的变系数一阶微分方程的标准形式为:

(2.1)

定理2.1[2] 设 , , ∈ , , ∈ , , 为常数 . 如果等式

1

(2.2) 在I上成立(k为常数),则方程

(2.3)

是可积的.

证明 令 ,则

将(2.2),(2.4)代入(2.3),得

(2.4)

,

.

属于可分离变量型,而V可由(2.4)解出,所以方程(2.2)是可积的.

推论2.1 设 为常数( ),则方程

是可积的.

在定理2.1中,令 ,则 ,即得推论2.1.

利用推论2.1,可以用化归为可分离变量型的求解方法,统一处理有关类型的一阶方程.

(1) 奇次方程 (2.6) 是(2.5)式,当 时的特例.由定理2.1知,可令 ,将(2.6)式化归为可分离变量型

来求解. (2) 线性一阶方程

(2.7)

是(2.5)式,当 时的特例.由定理2.1,可令 ,将(2.7)化归为

2

(2.5)

来求解,其中 .

(3) Bernoulli 方程 , . (2.8) 这是(2.5)式,在 时的特例.由定理2.1知,可令

,

将(2.8)化归为可分离变量型

来求解.

推论2.2 设 如果存在常数 ,使得

(2.9)

成立,则Riccati方程

(2.10)

是可积的.

证明 将(2.9)式变形为

它是Brinoulli方程 的通解.显然, .

在定理2.1中,令 ,应用定理2.1(此时定理中的 , , ),知方程

即(2.10)是可积的.

推论2.3 为常数 ,则一阶微分方程

是可积的,其中 为常数 .

在定理2.1中,令 即可得推论2.3.

3

变系数常微分方程的解法探讨 

目录1引言......................................................................12一阶变系数常微分方程的解法探讨............................................12.1变系数一阶微分方程的几个可积类型.............
推荐度:
点击下载文档文档为doc格式
4bkj33ycxt02tjb2ir7y
领取福利

微信扫码领取福利

微信扫码分享