好文档 - 专业文书写作范文服务资料分享网站

单招必备数学知识点①复习过程

天下 分享 时间: 加入收藏 我要投稿 点赞

学习资料

3、 会用五点法作图.

§1.4.2、正弦、余弦函数的性质

1、 周期函数定义:对于函数f?x?,如果存在一个非零常数T,使得当x取定义域内的每一

个值时,都有f?x?T??f?x?,那么函数f?x?就叫做周期函数,非零常数T叫做这个函数的周期.

§1.4.3、正切函数的图象与性质 1、记住正切函数的图象:

2、 能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、

周期性.

§1.5、函数y?Asin??x???的图象

1、 能够讲出函数y?sinx的图象和函数y?Asin??x????b的图象之间的平移伸缩变换关系. 2、 对于函数:

y?Asin??x????b?A?0,??0?有:振幅A,周期T?频率f?1T2??,初相?,相位?x??,

?2??.

§1.6、三角函数模型的简单应用

1、 要求熟悉课本例题.

第二章、平面向量

§2.1.1、向量的物理背景与概念 各种学习资料,仅供学习与交流

学习资料

1、 了解四种常见向量:力、位移、速度、加速度. 2、 既有大小又有方向的量叫做向量. §2.1.2、向量的几何表示

1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度. 2、 向量AB的大小,也就是向量AB的长度(或称模),记作AB;长度为零的向量叫做

零向量;长度等于1个单位的向量叫做单位向量.

3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行.

§2.1.3、相等向量与共线向量

1、 长度相等且方向相同的向量叫做相等向量. §2.2.1、向量加法运算及其几何意义 1、 三角形法则和平行四边形法则. 2、 a?b≤a?b.

§2.2.2、向量减法运算及其几何意义

1、 与a长度相等方向相反的向量叫做a的相反向量. §2.2.3、向量数乘运算及其几何意义

1、 规定:实数?与向量a的积是一个向量,这种运算叫做向量的数乘.记作:?a,它的

长度和方向规定如下: ⑴?a??a, ⑵当??0时, ?a的方向与a的方向相同;当??0时, ?a的方向与a的方向相反. 2、 平面向量共线定理:向量aa?0与b 共线,当且仅当有唯一一个实数?,使b??a. §2.3.1、平面向量基本定理

1、 平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内

任一向量a,有且只有一对实数?1,?2,使a??1e1??2e2. §2.3.2、平面向量的正交分解及坐标表示 1、 a?xi?yj??x,y?. §2.3.3、平面向量的坐标运算 各种学习资料,仅供学习与交流

??学习资料

1、 设a??x1,y1?,b??x2,y2?,则: ⑴a?b??x1?x2,y1?y2?,

⑵a?b??x1?x2,y1?y2?, ⑶?a???x1,?y1?, ⑷a//b?x1y2?x2y1. 2、 设A?x1,y1?,B?x2,y2?,则: AB??x2?x1,y2?y1?. §2.3.4、平面向量共线的坐标表示 1、设A?x1,y1?,B?x2,y2?,C?x3,y3?,则

?⑵△ABC的重心坐标为?⑴线段AB中点坐标为

x1?x22y2, ,y1?2?x1?x2?x33,y1?y32?y3.

?§2.4.1、平面向量数量积的物理背景及其含义 1、 a?b?abcos?.

2、 a在b方向上的投影为:acos?. 3、 a?a. 4、 a?22a.

25、 a?b?a?b?0.

§2.4.2、平面向量数量积的坐标表示、模、夹角 1、 设a??x1,y1?,b??x2,y2?,则:

⑴a?b?x1x2?y1y2 ⑵a?x12?y12

⑶a?b?x1x2?y1y2?0 2、 设A?x1,y1?,B?x2,y2?,则:

各种学习资料,仅供学习与交流

学习资料

AB??x2?x1?2??y2?y1?2.

§2.5.1、平面几何中的向量方法 §2.5.2、向量在物理中的应用举例

第三章、三角恒等变换

§3.1.1、两角差的余弦公式

1、cos??????cos?cos??sin?sin? 2、记住15°的三角函数值: ? cos? sin? ?12tan? 2?3 6?24 6?24 §3.1.2、两角和与差的正弦、余弦、正切公式 1、cos??????cos?cos??sin?sin? 2、sin??????sin?cos??cos?sin? 3、sin??????sin?cos??cos?sin? 4、tan??????1?tan?tan?.

tan??tan?5、tan??????1?tan?tan?.

tan??tan?§3.1.3、二倍角的正弦、余弦、正切公式 1、sin2??2sin?cos?, 变形:sin?cos??12sin2?. 2、cos2??cos2??sin2?

?2cos2??1 ?1?2sin2?,

变形1:cos2??1?cos2?,

2 变形2:sin2??1?cos2?.

23、tan2??2tan?.

21?tan?§3.2、简单的三角恒等变换 1、 注意正切化弦、平方降次.

各种学习资料,仅供学习与交流

学习资料

必修5数学知识点 第一章:解三角形 1、正弦定理: abc???2R. sinAsinBsinC2、余弦定理: a2?b2?c2?2bccosA,b2?a2?c2?2accosB, c2?a2?b2?2abcosC.b2?c2?a2cosA?,2bca2?c2?b2cosB?,

2aca2?b2?c2cosC?.2ab3、三角形面积公式: S?ABC?111absinC?bcsinA?acsinB 222第二章:数列

1、数列中an与Sn之间的关系: ,当n?1时,?S1an??

S?S,当n?1时.n?1?n2、等差数列: ⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。 ⑵通项公式:an?a1?(n?1)d ⑶求和公式:

Sn?na1??a?an?nn?n?1?d?1

223、等比数列 ⑴定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。

n?1⑵通项公式:an?a1q

a1?anqa11?qn?⑶求和公式:Sn?

1?q1?q??各种学习资料,仅供学习与交流

单招必备数学知识点①复习过程

学习资料3、会用五点法作图.§1.4.2、正弦、余弦函数的性质1、周期函数定义:对于函数f?x?,如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f?x?T??f?x?,那么函数f?x?就叫做周期函数,非零常数T叫做这个函数的周期.§1.4.3、正切函数的图象与性质
推荐度:
点击下载文档文档为doc格式
4bi990e3h83ibqw7s1xb7s7tu43ow500toz
领取福利

微信扫码领取福利

微信扫码分享