[很全]抛物线焦点弦的有关结论
知识点1:若AB是过抛物线y2?2px?p?0?的焦点F的弦。设A?x1,y1?,B?x2,y2?,则
p2(1)x1x2?;(2)y1y2??p2
4证明:如图,
(1)若AB的斜率不存在时,
p2p依题意x1?x2?,?x1x2?
42y x o F A B p??若AB的斜率存在时,设为k,则AB:y?k?x??,与y2?2px联立,得
2??p?k2p22?222k?x???2px?kx?k?2px??0
24??2??p2p2?x1x2?. 综上:x1x2?.
44yy22(2)?x1?1,x2?2,?y1y2?p4?y1y2??p2,
2p2p但y1y2?0,?y1y2??p2 (2)另证:设AB:x?my?p与y2?2px联立,得y2?2pmy?p2?0,?y1y2??p2 222知识点2:若AB是过抛物线y2?2px?p?0?的焦点F的弦。设A?x1,y1?,B?x2,y2?,则(1)AB?x1?x2?p;(2)设直线AB的倾斜角为?,则AB?证明:(1)由抛物线的定义知
ppAF?x1?,BF?x2?,
222p。 2sin?y o F A ?AB?AF?BF?x1?x2?p (2)若??900,则x1?x2?p2p ,由(1)知AB?2p?22sin?B p??若??900,设AB:y?k?x??,与y2?2px联立,得
2??
p?k2p2?222k?x???2px?kx?k?2px??0
2?4?22??pk2?22pk2?1?x1?x2?,?AB?x1?x2?p?,而k?tan?,
k2k22p1?tan2?2p?AB?? 22tan?sin???????知识点3:若AB是过抛物线y2?2px?p?0?的焦点F的弦,则以AB为直径的圆与抛物线的准线相切。
y 证明:过点A、B分别向抛物线的准线引垂线,垂足分别为 A A1、B1,过AB中点M向准线引垂线,垂足为N, 设以AB为直径的圆的半径为r,
?2r?AB?AF?BF?AA1?BB1?2MN?MN?r.?以AB为直径的圆与抛物线的准线相切。
o F B
知识点4:若AB是过抛物线y2?2px?p?0?的焦点F的弦。过点A、B分别向抛物线y A 0的准线引垂线,垂足分别为A1、B1,则?A1FB1?90。
证明借助于平行线和等腰三角形容易证明
o F B 知识点5:若AB是过抛物线y2?2px?p?0?的焦点F的弦,抛物线的准线与x轴相交于点K,则?AKF??BKF.
y 证明:过点A、B分别作准线的垂线,垂足分别为A1、B1. A ?AA1//KF//BB1
AKAF?1?而AF?A1A,BF?B1B B1KFB?K o F B A1KA1AAKBK? ?1?1,而?AA1K??BB1K?900 B1KB1BA1AB1B??AA1K∽?BB1K ??A1KA??B1KB ??AKF??BKF
知识点6:若AB是过抛物线y2?2px?p?0?的焦点F的弦,o为抛物线的顶点,连接
AO并延长交该抛物线的准线于点C,则BC//OF.
证明:设A?x1,y1?,B?x2,y2?,则
y A ?py1p?y1?AB:y?x,?C??,??? x122x1??y1py1pp2 ?yC??????22x1yy12?12po F C B p2?y2 ?BC//OF 由知识点1知y1y2??p ?yC??2p?y22逆定理:若AB是过抛物线y2?2px?p?0?的焦点F的弦,过点B作BC//OF交抛物线准线于点C,则A、C、O三点共线。
证明略
知识点7:若AB是过抛物线y2?2px?p?0?的焦点F的弦,设AF?m,BF?n,则 112??. mnpy A F 证法:(1)若AB?x轴,则AB为通径,而AB?2p,
?m?n?p ?112??. mnpo B p??(2)若AB与x轴不垂直,设A?x1,y1?,B?x2,y2?,AB的斜率为k,则l:y?k?x??与
2??p?k2p222?222y?2px联立,得k?x???2px?kx?k?2px??0
24??2??pk2?2p2?x1?x2?,x1x2?. 24k??由抛物线的定义知m?AF?x1?pp,n?BF?x2? 22
?11m?n???mnmnx1?x2?p2 ?2pppx1x2??x1?x2??24知识点8:已知抛物线y2?2px?p?0?中,AB为其过焦点F的弦,AF?m,BF?n,则
S??AOB?p2y 4?nm????m?n? ?A 证明:设?AFx??,则
o F S?AOB?S?AOF?S?BOF
B ?1?p?msin??????1p 222?2?sin??p
4?m?n?sin?而m?p1?cos?,n?pp2p21?cos?,?mn?sin2?,?sin??mn 2?S?p4?m?n?p2p??AOBmn?4?nm????. ?mn??逆定理:已知抛物线y2?2px?p?0?中,AB为其弦且与x轴相交于点M,AM?m,BM?n,且Sp2?AOB??4?n?m??mn??,则弦AB过焦点。 ??证明:设A?x1,y1?,B?x2,y2?,?AMx??,M?t,0?,则
S12tmsin??????12tnsin??1?AOB?S?AOM?S?BOM=2?m?n?tsin?
而sin??y12m,sin??yn, ?sin2???y1y2mn ?sin???y1y2?y1y21?m?n?mn ?S1?AOB?2?m?n?tmn?2mnt?y1y2 而S?p2??AOB4?nm??m?n?1???m?n?p2yp2?2mn2 ?t?y12?2① ?又可设
l:x?ay?t?2y2?2px??y?2pay?2pt?0 ?y1y2??2pt② ?
若
由①②得t?p?p? ?AB恒过焦点?,0? 2?2?例1、过抛物线y2?4x的焦点做直线交抛物线于A(x1,y1),B(x2,y2)两点,如果x1?x2?6,那么AB?_________. 8
变式:过抛物线y2?4x的焦点做直线交抛物线于A,B两点,如果AB?8,O为坐标原点,则?OAB的重心的横坐标是_________. 2
例2、直线l经过抛物线y2?2px(p?0)的焦点F,且与抛物线交于A,B两点,由A,B分别向准线引垂线AA',BB',垂足分别为A',B',如果A'B'?a,Q为A'B'的中点,则QF? _________.(用a表示)
a 2变式:直线l经过抛物线y2?2px(p?0)的焦点F,且与抛物线交于A,B两点,由A,B分别向准线引垂线AA',BB',垂足分别为A',B',如果AR?a,BF?b,Q为A'B'的中点,
a2?b2则QF?_________.(用a,b表示)
2uuuruuur例3、设坐标原点为O,过焦点的直线l交抛物线y?4x于A,B两点,OA?OB? -3
2例4、过抛物线y?ax(a?0)的焦点F作一直线交抛物线于P,Q两点,若线段PF与FQ的长分别是p,q,则
114??_____. pqa2yA′(x1,y1)
x小结:
(1)抛物线中的焦点弦问题很多都可以转化为这个直角梯形中的问题,在解决这类问题时注意对这个梯形的运用;
(2)万变不离其宗,解决问题的关键仍然是抛物线定义.
B′(x2,y2)