【易错题】高中必修五数学上期中模拟试题附答案
一、选择题
?n2(n为奇数时)1.已知函数f(n)??2,若an?f(n)?f(n?1),则
?n(n为偶数时)?a1?a2?a3?L?a100?
A.0 C.?100
B.100 D.10200
2.在等差数列{an}中,a1?a2?a3?3,a28?a29?a30?165,则此数列前30项和等于( ) A.810
B.840
C.870
D.900
3.已知数列?an?的首项a1?1,数列?bn?为等比数列,且bn?an?1.若b10b11?2,则anD.212
a21?( )
A.29
B.210
C.211
n4.已知数列{an}满足a1?1,an?1?an?2,则a10?( )
A.1024 B.2048 C.1023 D.2047
5.已知等比数列{an}中,a1?1,a3?a5?6,则a5?a7?( ) A.12
B.10
C.122 D.62 6.已知不等式x2?2x?3?0的解集为A,x2?x?6?0的解集为B,不等式
x2+ax?b?0的解集为AIB,则a?b?( )
A.-3
2B.1 C.-1 D.3
7.关于x的不等式x??a?1?x?a?0的解集中,恰有3个整数,则a的取值范围是( )
A.??3,?2???4,5? B.??3,?2???4,5? C.?4,5?
D.(4,5)
8.已知幂函数y?f(x)过点(4,2),令an?f(n?1)?f(n),n?N?,记数列?前n项和为Sn,则Sn?10时,n的值是( ) A.10
B.120
C.130
D.140
?1??的?an?9.设?an?是公差不为0的等差数列,a1?2且a1,a3,a6成等比数列,则?an?的前n项和
Sn=( )
n27nA. ?44A.7
n25nB.?
33B.5
n23nC.?
24C.?5
D.n2?n
10.已知{an}为等比数列,a4?a7?2,a5a6??8,则a1?a10?( )
D.?7
11.在VABC中,角A、B、C的对边分别为a、b、c,若
(a?c?cosB)?sinB?(b?c?cosA)?sinA,则VABC的形状为()
A.等腰三角形 C.等腰直角三角形
B.直角三角形
D.等腰三角形或直角三角形
12.在等比数列?an?中,a2?a1?2,且2a2为3a1和a3的等差中项,则a4为( ) A.9
B.27
C.54
D.81
二、填空题
?2x?y?0?13.已知实数x,y满足不等式组?x?y?3?0,则z?x?2y的最小值为__________.
?x?2y?6?14.已知
的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.
15.如图,无人机在离地面高200m的A处,观测到山顶M处的仰角为15°、山脚C处的俯角为45°,已知∠MCN=60°,则山的高度MN为_________m.
?2n?1,1?n?2Sn?______. 16.若数列?an?通项公式是an???n,前n项和为Sn,则limn???3,n?3a1?2a2?L?2n?1ann?117.定义Hn?为数列?an?的均值,已知数列?bn?的均值Hn?2,
n记数列?bn?kn?的前n项和是Sn,若Sn?S5对于任意的正整数n恒成立,则实数k的取值范围是________.
218.(理)设函数f(x)?x?1,对任意x??,???,
?3?2??xf()?4m2f(x)?f(x?1)?4f(m)恒成立,则实数m的取值范围是______. m519.若等比数列{an}的各项均为正数,且a10a11?a9a12?2e,则
lna1?lna2?L?lna20等于__________.
20.在锐角ΔABC中,内角A,B,C的对边分别为a,b,c,已知
a?2b?4,asinA?4bsinB?6asinBsinC,则nABC的面积取最小值时有c2?__________.
三、解答题
21.在△ABC中,a,b,c分别为内角A,B,C的对边,且asin B=-bsin?A??????. 3?(1)求A;
(2)若△ABC的面积S=32
c,求sin C的值. 422.如图,游客从某旅游景区的景点A处下上至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C,假设缆车匀速直线运动的速度为
130m/min,山路AC长为1260m,经测量cosA?123,cosC?.
513
(1)求索道AB的长;
(2)问:乙出发多少min后,乙在缆车上与甲的距离最短?
(3)为使两位游客在C处互相等待的时间不超过3min,乙步行的速度应控制在什么范围内?
23.在VABC中,角A,B,C的对边分别为a,b,c,a?(1)若?A?90?,求VABC的面积; (2)若VABC的面积为
1?4cosC,b?1. a3,求a,c. 21sinA?3cosA共线,其中A是△ABC的内角. 24.已知向量m?sinA,2与n?3,????(1)求角A的大小;
(2)若BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.
?an?1,n为奇数n?N*?设bn?a2n?1. 25.已知数列?an?满足:a1=1,an?1????2an,n为偶数(1)证明:数列?bn?2?为等比数列; (2)求数列??3n??的前n项和Sn. ?bn+2?26.在ΔABC中,角A,B,C所对的边分别为a,b,c,且sin2A?sin2C?sin2B?sinAsinC.
(1)求B的大小;
(2)设?BAC的平分线AD交BC于D,AD?23,BD?1,求sin?BAC的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B 【解析】
试题分析:由题意可得,当n为奇数时,an?f(n)?f(n?1)?n2??n?1???2n?1;当
2n为偶数时,an?f(n)?f(n?1)??n2??n?1?2?2n?1;所以
a1?a2?a3?L?a100??a1?a3?L?a99???a2?a4?L?a100???2?1?3?5?L?99??99?2?2?4?6?L?100??99?100,
故选B.
考点:数列的递推公式与数列求和.
【方法点晴】本题主要考查了数列的递推公式与数列求和问题,考查了考生的数据处理与
n2(当n为奇数时)运算能力,属于中档题.本题解答的关键是根据给出的函数f?n??{2及
?n(当n为偶数时)an?f(n)?f(n?1)分别写出n为奇数和偶数时数列?an?的通项公式,然后再通过分
组求和的方法得到数列?an?前100项的和.
2.B
解析:B 【解析】
数列前30项和可看作每三项一组,共十组的和,显然这十组依次成等差数列,因此和为
10(3?165)?840 ,选B. 23.B
解析:B 【解析】
【分析】
由已知条件推导出an=b1b2…bn-1,由此利用b10b11=2,根据等比数列的性质能求出a21. 【详解】
数列{an}的首项a1=1,数列{bn}为等比数列,且bn?∴b1=an?1, anaaa2?a3?b1b2,b3=4,?a4?b1b2b3,?a2,b2=3,
a3a1a2Qb10b11?2,?a21?b1b2?b20?(b1b20)?(b2b19)???(b10b11)?210 . …an?b1b2?bn?1,故选B. 【点睛】
本题考查数列的第21项的求法,是中档题,解题时要认真审题,注意递公式和等比数列的性质的合理运用.
4.C
解析:C 【解析】 【分析】 根据叠加法求结果. 【详解】
nn因为an?1?an?2,所以an?1?an?2,
1?210因此a10?a10?a9?a9?a8?L?a2?a1?a1?2?2?L?2?1??1023,选C.
1?2【点睛】
本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.
985.A
解析:A 【解析】
2422由已知a3?a5?q?q?6,∴q?2,∴a5?a7?q(a3?a5)?2?6?12,故选A.
6.A
解析:A 【解析】 【分析】
根据题意先求出集合A,B,然后求出AIB=(?1,2),再根据三个二次之间的关系求出
a,b,可得答案.
【详解】
由不等式x2?2x?3?0有-1
【易错题】高中必修五数学上期中模拟试题附答案
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)