?Aj?79位移法的基本体系计算步骤如下:
S
A1)确定基本未知量; 2)确定位移法基本体系; 3)建立位移法典型方程;
4)画单位弯矩图、荷载弯矩图; 5) 由平衡求系数和自由项; 6)解方程,求基本未知量;
7)按 M=∑Mi·Δi+MP 叠加最后弯矩图。 8)利用平衡条件由弯矩图求剪力;由剪力图求轴力。 9)校核平衡条件。
80. 与线位移相应的位移法方程是沿线位移方向的截面投影方程。方程中的系数和自由项是基本体系附加支杆中的反力,由截面投影方程来求。
81.力矩分配法的理论基础是位移法,故力矩分配法中对杆端转角、杆端弯矩、固端弯矩的正负号规定与位移法相同,即都假设对杆端顺时针旋转为正号、对结点或附加刚臂逆时针旋转为正号。作用于结点的外力偶荷载、作用于附加刚臂的约束反力矩,也假定为对结点或附加刚臂顺时针旋转为正号。
82.在结点上的外力矩按各杆分配系数分配给各杆近端截面,各杆远端弯矩分别等于各杆近端弯矩乘以传递系数。
传递系数 =远端弯矩/近端弯矩 分配系数
83.用力矩分配法计算连续梁和无侧移刚架计算步骤: 第一,计算单跨超静定梁的固端弯矩;
第二,计算结点处各杆端的弯矩分配系数;将不平衡弯矩(固端弯矩之和)反号后,在结点处按分配系数进行分配。
第三,计算各杆件由近端向远端传递的弯矩传递系数。在各杆上按传递系数进行传递。 第四,将各杆的固端弯矩、分配弯矩、传递弯矩相加,即得各杆的最后弯矩。作内力图。
SAj????1
84.无剪力分配法应用条件
适用于刚架中除两端无相对线位移的杆件(无侧移杆)外,其余杆件都是剪力静定杆件的有侧移刚架。
可以解只有一根竖柱的刚架,且横梁端部的链杆应与柱平行的问题。但也可以推广到单跨多层对称刚架等问题。