.*
检验力也是主要的批评来源。Mackinnon(2002)通过模拟研究比较了三类中介效应检验方法的表现,发现因果逐步回归法的统计功效(Power)最低,并且容易低估第Ⅰ类错误率,统计功效最低成为因果步骤法的主要批评来源。有学者认为,因果步骤法统计功效最低主要与因果步骤法需要自变量显著影响因变量(即系数c显著)有关,系数c显著的要求严重降低了统计功效。放弃系数c显著的因果步骤法称为联合显著法(joint significance),Mackinnon(2002)的模拟研究发现联合显著法的统计功效显著高于因果步骤法。
Shrout和Bolger(2002)指出当ab和c'方向相反时,就可能会导致系数c不显著。Preacher和Hayes(2008)指出在有两个中介变量的模型中,如果两个中介效应方向相反,也可能会导致系数c不显著,有研究者将这种现象称之为遮蔽效应,即一旦出现c不显著但中介效用显著时,要进一步去考察是否会存在上述两种情况,研究的解释也应按照遮蔽效应来解释。
多重中介模型
(3)区分完全中介和部分中介是否合适?
因果逐步回归法中最后一步, 通过检验方程(3)的系数c来区分完全中介还是部分中介。如果系数c不显著,属于完全中介。Baron 和Kenny(1986)认为完全中介是中介效应存在的最强有力的证明。区分完全中介和部分中介,是对中介效应模型的效应量的一种文字描述, 可以帮助解释结果。但完全中介和部分中介概念是有问题的:
第一,在总效应小(但显著)的时候,间接效应可能占总效应的比重也很小,直接效应已经不显著了,结果是完全中介,与常理相悖。一般地说,当总效应小且样本也小的时候,容易得到完全中介的结果,但其实完全中介的情况是很少的。
第二,当说M是X 和Y关系的完全中介时,排除了将来探索其他中介的可能性。Preacher 和Hayes(2008)呼吁放弃完全中介的概念,将所有中介都看作是部分中介,Zhao等人(2010)建议直接报告间接效应和直接效应的显著性。 (4)效果量能否准确反映中介效应
由于中介效应ab 的统计显著性实际上是效果量和样本量共同作用的结果,因此,当中介效应显著后还需要报告独立于样本量的效果量大小,效果量才是研究者最关心的。Mackinnon(2008)总结了7种中介效果量指标,其中使用最广的是ab/c 和ab/c',但ab/c和
.*
ab/c'作为中介效果量指标存在诸多问题。
就ab/c指标而言,第一,效果量的大小可能不能准确反映中介效应的实际重要性,二者之间可能存在较大差异。例如当c很小时,即使很小的中介效应ab都会产生较大的效果量值,同理,当c很大时,即使很大的中介效应ab也只能产生较小的效果量值。第二,尽管许多研究者将ab/c 看成是一个比值,表示中介效应ab在总效应c(c=ab +c')中所占的比例,但实际上,当ab与c'方向相反时,ab /c的值可以大于1,也可以是负值,甚至小于-1,这表明ab/c不是一个比值,不能表示中介效应占总效应的比例。Shrout 和Bolger(2002)甚至建议ab/c在ab和c'方向相同的情况下使用。第三,ab/c的使用需要大样本,ab /c只有当样本量大于500 时才稳定。 2.2乘积系数法
系数乘积法由于直接检验中介效应ab 是否显著不为0,无需以系数c显著作为中介效应检验的前提条件,可以直接提供中介效应的点估计和置信区间,且Mackinnon(2002)的模拟研究也发现系数乘积法的统计功效优于因果逐步回归法。因此,系数乘积法逐渐得到众多研究者的青睐。系数乘积法分为两类,一类是基于中介效应的抽样分布为正态分布的Sobel 检验法,另一类是基于中介效应的抽样分布为非正态分布的不对称置信区间法(asymmetric confidence interval)。 2.2.1 Sobel中介效应检验法
Sobel检验法就是用中介效应估计值^a^b除以中介效应估计值^a^b的标准误^σ^a^b得到一个z值(z=^a^b/^σ^a^b),将这个z值和基于标准正态分布的临界z值进行比较,如果z值大于临界z值,说明中介效应存在,如果z值小于临界z值,说明中介效应不存在;或构建一个对称的置信区间(^a^b-zα/2×^σ^a^b,^a^b+zα/2×^σ^a^b),如果置信区间不包括0,说明有中介效应存在,置信区间包括0,说明中介效应不存在(MacKinnon etal.,2002;温忠麟等,2004)。
Sobel检验的前提假设是中介效应^a^b是正态分布且需要大样本,因为只有在正态分布下,才能使用基于标准正态分布的临界z值。但实际的情况是,即使^a和^b都是正态分布,^a^b也不一定是正态分布,更进一步的说,只要^a^b不为零,^a^b的分布就是偏态分布,并且分布的峰值还会随着中介效应值^a^b的变化而变化。因此,基于中介效应^a^b是正态分布的Sobel检验仍是不准确的,而且导致了统计功效降低。Macho和Ledermann(2011)指出Sobel检验的另一个不足是在有多个中介变量的模型中,中介效应估计值的标准误^σ^a^b常用Delta法计算,计算公式比较复杂,且使用不便。
软件具体操作步骤:
下载Sobel插件安装在Spss中(http://www.comm.ohio-state.edu/ahayes/) 步骤一、运行SPSS,打开数据文件;
步骤二、在SPSS 程序的菜单栏中找到“分析”栏目下的“回归”,在“回归”下面找
.*
到已经安装的sobel插件;
步骤三、运行sobel程序,出现对话框;
步骤四、在对话框里的相应的输入框里,输入因变量,自变量,中介变量。如果需要,也可以输入协变量;
步骤五、把取样(Bootstrap samples)设定为某一数字,一般为1000,建议为5000;
步骤六、点击确定。
Sobel操作界面
Sobel操作图示:
Sobel检验结果输出
.*
2.2.2不对称置信区间法
针对现有中介效应分析中的不足,Zhao(2010)建议使用Preacher和Hayes在2004发展的Bootstrap方法检验中介效应。不对称置信区间法由于放弃了中介效应的抽样分布为正态分布的前提,对中介效应的抽样分布不加限制,因此得到不对称置信区间。Bootstrap 法能适用于中、小样本和各种中介效应模型,且目前常用的各种统计软件都能进行Bootstrap 法运算。该方法主要包括非参数百分位Bootstrap置信区间法和偏差校对非参数百分位Bootstrap置信区间法。Bootstrap 法是一种从样本中重复取样的方法, 前提条件是样本能够代表总体(当然这也是通常取样进行统计推论的要求)。Bootstrap 法有多种取样方案, 其中一种简单的方案是从给定的样本中有放回地重复取样以产生出许多样本, 即将原始样本当作Bootstrap总体,从这个Bootstrap总体中重复取样以得到类似于原始样本的Bootstrap样本。(例如, 将一个容量为500的样本当作Bootstrap总体, 从中有放回地重复取样,可以得到一个Bootstrap样本(容量还是500)。
Zhao等(2010)中介效应分析程序
(1)基于Process插件的操作 PROCESS插件做中介和调节的优点:
近几年来,Hayes开发的基于SPSS和SAS的中介和调节效应分析程序插件Process得到了越来越多的人的应用,主要的优势有这么几点:
第一,中介效应分析一步到位。在Process之前,中介效应分析要分步进行,分为三步(实际上两步就可以)。第一步检验总效应,即自变量X对因变量Y的总效应。但这一步已经被证明是没有必要的甚至是错误的,总效应存在与否不是中介效应的必要条件,因此,先前支持中介效应三步法的一些学者后来做了修正,不再把检验总效应作为前提条件,也就是三步法实际上变成了两步法。此外,结构方程模型的思路再次证明,第一步检验总效应的做法完全没有必要。Hayes显然早已发现了这一点,因此,Process插件做的就是两步而不是三步。Process直接将这两步整合起来,得到一个总的结果,不需要分两步设置和分析,这就
.*
大大简化了步骤,结果呈现更更全面。值得一提的是,Process虽然两步整合在一起,但其结果也是分步呈现,因而非常方便我们在论文中整理成规范的表格结果。
第二,Process的操作应用。Process主要应用于SPSS、SAS等传统数据统计分析软件,在SPSS中除了可以可视化操作外,还可以通过Syntax语法等方式操作,扩展功能更为强大。 第三,Process的模型构建。Process提供了76个模型,分析过程中需要选择对应的模型,设置相应的自变量、因变量、中介或调节变量即可。
第四,调节效应分析前的数据处理自动化。在Process出来之前,调节效应的分析要经过两个重要环节——变量中心化和构建交互项,虽然这两步的操作不难,但有时候容易忽视或者计算出错。Process提供了均值中心化之后的交互项设置,可以自动完成,因此更为准确高效。
第五,中介效应的Bootstrap和Sobel检验可以自动处理。在Process开发之前,中介效应的Bootstrap需要特别设置,Sobel检验需要手工计算(或者用专门的小程序),Process则可以直接自动化完成,并直接得到中介效应值Sobel检验值Z和显著性水平(基于理论正态分布)。
第六,可以处理带有控制变量的中介、调节效应模型。在中介效应和调节效应分析中,尤其是调节效应分析,经常需要对控制变量进行控制,Process对此也有专门的设置(协变量中处理即可)。
第七,处理多变量中介、调节效应更方便,例如多重中介效应、有中介的调节效应、有调节的中介效应等。例如,以往的SPSS分析不能提供多重中介模型的各个具体路径、各个中介变量单独的中介效应检验,如中介效应值及其置信区间和显著性水平等,而Process则可以提供这些结果。
第八,其他注意事项。Process只能处理显变量路径分析模型,不能处理潜变量模型,潜变量模型需要使用结构方程模型。那么,是用SPSS的Process插件还是用Amos等结构方程模型处理中介(Mediation)、调节效应(Moderation),哪个更好? 对此要考虑这么几个问题,一个是样本量的问题,当样本量比较小时,用SPSS的Process方法比较好,因为小样本的数据更接近t分布而不是正态分布,而结构方程模型主要用于处理大样本。另一个是测量误差问题,SPSS只能处理显变量,不能分离测量误差,因而其结果不如潜变量的结构方程模型精确。第三是,SPSS不能像结构方程模型那样提供模型拟合参数,不能进行模型的整体评价。因此,如果研究者关注的重点是路径关系而不是整体模型效度,或者结构方程模型分析发现变量之间的路径关系符合理论假设但模型拟合不佳(需要规避模型拟合问题)则考虑SPSS的Process方法比较好。
非参数百分位Bootstrap置信区间法的原理和步骤:
第一,以原样本(样本容量为n)为基础,在保证每个观察单位每次被抽到的概率相等(均为1/n) 的情况下进行有放回的重复抽样,得到一个样本容量为n的Bootstrap样本;