好文档 - 专业文书写作范文服务资料分享网站

(完整)初中数学几何的动点问题专题练习

天下 分享 时间: 加入收藏 我要投稿 点赞

牟天昊专用

动点问题专题训练

1、(09包头)如图,已知△ABC中,AB?AC?10厘米,BC?8厘米,点D为AB的中点.

(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.

①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运B 动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?

解:(1)①∵t?1秒, ∴BP?CQ?3?1?3厘米,

∵AB?10厘米,点D为AB的中点, ∴BD?5厘米.

又∵PC?BC?BP,BC?8厘米, ∴PC?8?3?5厘米, ∴PC?BD. 又∵AB?AC, ∴?B??C,

∴△BPD≌△CQP. ············································································· (4分) ②∵vP?vQ, ∴BP?CQ,

又∵△BPD≌△CQP,?B??C,则BP?PC?4,CQ?BD?5, ∴点P,点Q运动的时间t?∴vQ?D Q P C A BP4?秒, 33CQ515································································· (7分) ??厘米/秒. ·

44t3(2)设经过x秒后点P与点Q第一次相遇, 由题意,得解得x?15x?3x?2?10, 480秒. 3 1 / 22

牟天昊专用

80?3?80厘米. 3∵80?2?28?24,

∴点P共运动了

∴点P、点Q在AB边上相遇,

80秒点P与点Q第一次在边AB上相遇. ········································· (12分) 332、(09齐齐哈尔)直线y??x?6与坐标轴分别交于A、B两点,动点P、Q同

4∴经过

时从O点出发,同时到达A点,运动停止.点Q沿线段OA 运动,速度为每秒1个单位长度,点P沿路线O→B→A运动. (1)直接写出A、B两点的坐标;

(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式;

48时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四5边形的第四个顶点M的坐标. y (3)当S?

解(1)A(8,0)B(0,6) ··············· 1分 (2)QOA?8,OB?6 ?AB?10

B P x 8Q点Q由O到A的时间是?8(秒)

16?10?点P的速度是 1分 ?2(单位/秒) ·

8O Q A 当P在线段OB上运动(或0≤t≤3)时,OQ?t,OP?2t

S?t2 ·········································································································· 1分

当P在线段BA上运动(或3?t≤8)时,OQ?t,AP?6?10?2t?16?2t, 如图,作PD?OA于点D,由

PDAP48?6t?,得PD?, ······························ 1分 BOAB51324?S?OQ?PD??t2?t ······································································· 1分

255(自变量取值范围写对给1分,否则不给分.)

(3)P?,? ···························································································· 1分

?824??55? 2 / 22

牟天昊专用

??824??1224??1224?I1?,?,M2??,?,M3?,?? ···················································· 3分

5??55??55??5

3(09深圳)如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴

相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.

(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?

解:(1)⊙P与x轴相切.

∵直线y=-2x-8与x轴交于A(4,0),

与y轴交于B(0,-8), ∴OA=4,OB=8. 由题意,OP=-k, ∴PB=PA=8+k.

在Rt△AOP中,k2+42=(8+k)2, ∴k=-3,∴OP等于⊙P的半径, ∴⊙P与x轴相切.

(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P

在线段OB上时,作PE⊥CD于E.

∵△PCD为正三角形,∴DE= ∴PE=13CD=,PD=3, 2233. 2∵∠AOB=∠PEB=90°, ∠ABO=∠PBE, ∴△AOB∽△PEB,

33AOPE4?,即=2, ABPB45PB 3 / 22

牟天昊专用

315, 2315, 2∴PB?∴PO?BO?PB?8?∴P(0,∴k?315?8), 2315?8. 2315-8), 2当圆心P在线段OB延长线上时,同理可得P(0,-∴k=-315-8, 2315315-8或k=--8时,以⊙P与直线l的两个交点和圆心P为顶点的三22角形是正三角形.

∴当k=4(09哈尔滨) 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),

点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H. (1)求直线AC的解析式;

(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

4 / 22

牟天昊专用

解:

5 / 22

牟天昊专用

5(09河北)在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单

B 位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动

E 的时间是t秒(t>0). Q (1)当t = 2时,AP = ,点Q到AC的距

D 离是 ;

A C P (2)在点P从C向A运动的过程中,求△APQ

图16

的面积S与 B t的函数关系式;(不必写出t的取值范围)

(3)在点E从B向C运动的过程中,四边形QBED能否成 E 为直角梯形?若能,求t的值.若不能,请说明理由;

Q (4)当DE经过点C 时,请直接写出t的值. ..

D

8解:(1)1,;

5A 图4

B P

C (2)作QF⊥AC于点F,如图3, AQ = CP= t,∴AP?3?t. 由△AQF∽△ABC,BC?52?32?4, QFt4得?.∴QF?t.

455Q D A P E C ∴S?(3?t)?t, 即S??t2?t.

(3)能.

①当DE∥QB时,如图4.

∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形. 此时∠AQP=90°. AQAP由△APQ ∽△ABC,得, ?ACAB25651245图5

B Q G D A P C(E) B G 图6 Q 即?t33?t9. 解得t?. 58②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.

此时∠APQ =90°. 由△AQP ∽△ABC,得

AQAP, ?ABACA P D C(E) t3?t15即?. 解得t?. 538图7

6 / 22

牟天昊专用

545或t?. 214(4)t?①点P由C向A运动,DE经过点C.

连接QC,作QG⊥BC于点G,如图6.

34PC?t,QC2?QG2?CG2?[(5?t)]2?[4?(5?t)]2.

55由PC2?QC2,得t2?[(5?t)]2?[4?(5?t)]2,解得t?②点P由A向C运动,DE经过点C,如图7.

34(6?t)2?[(5?t)]2?[4?(5?t)]2,t?45】

5514

35455. 2

6(09河南))如图,在Rt△ABC中,?ACB?90°,?B?60°,BC?2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点A E,设直线l的旋转角为?. (1)①当?? 度时,四边形EDBC是等腰梯形,此时AD的长为 ; ②当?? 度时,四边形EDBC是直角梯形,此时AD的长为 ;

(2)当??90°时,判断四边形EDBC是否为菱形,并说A 明理由.

E O ? D l C B C O B (备用图)

解(1)①30,1;②60,1.5; ……………………4分 (2)当∠α=90时,四边形EDBC是菱形. ∵∠α=∠ACB=90,∴BC//ED.

∵CE//AB, ∴四边形EDBC是平行四边形. ……………………6分 在Rt△ABC中,∠ACB=90,∠B=60,BC=2,

∴∠A=30.

0

0

0

0

0

∴AB=4,AC=23. ∴AO=

1AC=3 . ……………………8分 20

在Rt△AOD中,∠A=30,∴AD=2. ∴BD=2.

7 / 22

牟天昊专用

∴BD=BC.

又∵四边形EDBC是平行四边形,

∴四边形EDBC是菱形 ……………………10分

7(09济南)如图,在梯形ABCD中,

AD∥BC,AD?3,DC?5,AB?42,∠B?45?.动点M从B点出发沿线段

动点NBC以每秒2个单位长度的速度向终点C运动;A D 同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.

N (1)求BC的长.

B (2)当MN∥AB时,求t的值. C M (3)试探究:t为何值时,△MNC为等腰三角形.

解:(1)如图①,过A、D分别作AK?BC于K,DH?BC于H,则四边形ADHK是矩形

∴KH?AD?3 ················································································ 1分 .sin45??42.在Rt△ABK中,AK?ABg2?4 2BK?ABgcos45??42g2?4 ·························································· 2分 2在Rt△CDH中,由勾股定理得,HC?52?42?3

∴BC?BK?KH?HC?4?3?3?10 ················································· 3分 A D A D

N

C B C B K H G M

(图①) (图②)

(2)如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形 ∵MN∥AB ∴MN∥DG ∴BG?AD?3 ∴GC?10?3?7 ············································································· 4分 由题意知,当M、N运动到t秒时,CN?t,CM?10?2t. ∵DG∥MN

∴∠NMC?∠DGC 又∠C?∠C

∴△MNC∽△GDC

8 / 22

牟天昊专用

CNCM ··················································································· 5分 ?CDCGt10?2t即? 5750解得,t? ···················································································· 6分

17∴

(3)分三种情况讨论:

①当NC?MC时,如图③,即t?10?2t ∴t?10 ·························································································· 7分 3D N

A A D

N

B B C

M

(图④) (图③)

②当MN?NC时,如图④,过N作NE?MC于E 解法一:

由等腰三角形三线合一性质得EC?M H E

C

11MC??10?2t??5?t 22EC5?t在Rt△CEN中,cosc? ?NCtCH3又在Rt△DHC中,cosc??

CD55?t3∴?

t525解得t? ······················································································· 8分

8解法二:

∵∠C?∠C,?DHC??NEC?90? ∴△NEC∽△DHC

NCEC ?DCHCt5?t即? 5325∴t? ·························································································· 8分

811③当MN?MC时,如图⑤,过M作MF?CN于F点.FC?NC?t

22∴

解法一:(方法同②中解法一)

9 / 22

牟天昊专用

1tFC3cosC??2?

MC10?2t560解得t?

17解法二:

∵∠C?∠C,?MFC??DHC?90? ∴△MFC∽△DHC ∴

B

A D

N F

H M

C

(图⑤)

FCMC ?HCDC1t10?2t2即 ?3560∴t?

17256010综上所述,当t?、t?或t?时,△MNC为等腰三角形 ··············· 9分

8173

8(09江西)如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB?4,BC?6,∠B?60?. (1)求点E到BC的距离;

(2)点P为线段EF上的一个动点,过P作PM?EF交BC于点M,过M作MN∥AB交折线ADC于点N,连结PN,设EP?x. ①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由; ②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.

A E B

图1 A E B

D F C

B

A E P N

D F C B

A E P D N F

C

M D F C

图4(备用)

图2

D

M

图3

(第25题) A

E B

图5(备用)

F C

10 / 22

牟天昊专用

解(1)如图1,过点E作EG?BC于点G. ······················ 1分

∵E为AB的中点,

1∴BE?AB?2.

2在Rt△EBG中,∠B?60?,∴∠BEG?30?. ············ 2分

1∴BG?BE?1 ,EG?22?12?3.2即点E到BC的距离为3. ····································· 3分

A E B

D F C

图1

G

(2)①当点N在线段AD上运动时,△PMN的形状不发生改变. ∵PM?EF,EG?EF,∴PM∥EG. ∵EF∥BC,∴EP?GM,PM?EG?3.

同理MN?AB?4. ·················································································· 4分 如图2,过点P作PH?MN于H,∵MN∥AB, ∴∠NMC?∠B?60?,∠PMH?30?. N

A D ∴PH?13PM?. 22B

E P H F C

图2

3∴MH?PMg cos30??.235则NH?MN?MH?4??.

222G M ?5??3?22在Rt△PNH中,PN?NH?PH????? ?7.???22????∴△PMN的周长=PM?PN?MN?3?7?4. ······································· 6分 ②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角形.

当PM?PN时,如图3,作PR?MN于R,则MR?NR.

23 .2∴MN?2MR?3 ··················································································· 7分 .∵△MNC是等边三角形,∴MC?MN?3 .此时,x?EP?GM?BC?BG?MC?6?1?3?2. ··································· 8分

类似①,MR?A E B

P R

G

M

图3

C

B

G

图4

D N F

A E P

D F N C

B

A E D F(P) N C

M G

图5

M

11 / 22

牟天昊专用

当MP?MN时,如图4,这时MC?MN?MP?3.

此时,x?EP?GM?6?1?3?5?3.

当NP?NM时,如图5,∠NPM?∠PMN?30?.

则∠PMN?120?,又∠MNC?60?, ∴∠PNM?∠MNC?180?.

因此点P与F重合,△PMC为直角三角形. ∴MC?PMg tan30??1.此时,x?EP?GM?6?1?1?4.

综上所述,当x?2或4或5?3时,△PMN为等腰三角形. ···················· 10分

??9(09兰州)如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4), 点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,

同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,

设运动的时间为t秒.

(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;

(2)求正方形边长及顶点C的坐标;

(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标; (4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.

解:(1)Q(1,0) ······················································································· 1分 点P运动速度每秒钟1个单位长度. ·········································································································· 2分 (2) 过点B作BF⊥y轴于点F,BE⊥x轴于点E,则BF=8,OF?BE?4. ∴AF?10?4?6.

y 在Rt△AFB中,AB?82?62?10 3分 过点C作CG⊥x轴于点G,与FB的延长线交于点H. ∵?ABC?90?,AB?BC ∴△ABF≌△BCH.

DCAMFONQP

12 / 22H BEGx牟天昊专用

∴BH?AF?6,CH?BF?8. ∴OG?FH?8?6?14,CG?8?4?12.

∴所求C点的坐标为(14,12). 4分 (3) 过点P作PM⊥y轴于点M,PN⊥x轴于点N, 则△APM∽△ABF. ∴

APAMMPtAMMP??. ??. ?ABAFBF10683434 ∴AM?t,PM?t. ∴PN?OM?10?t,ON?PM?t.

5555设△OPQ的面积为S(平方单位)

13473∴S??(10?t)(1?t)?5?t?t2(0≤t≤10) ················································· 5分

251010说明:未注明自变量的取值范围不扣分.

473<0 ∴当t??时, △OPQ的面积最大. ························· 6分 ?36102?(?)104710 ∵a?? 此时P的坐标为(

9453,) . ····································································· 7分 15105295(4) 当 t?或t?时, OP与PQ相等. ················································· 9分

31310(09临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.?AEF?90o,且EF交正方形外角?DCG的平行线CF于点F,求证:AE=EF.

经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE?EF.

在此基础上,同学们作了进一步的研究:

(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.

A

D

F

B E C 图1

G

B

E C 图2 A

D

F G

B 图3

C E G

F A

D

13 / 22

牟天昊专用

解:(1)正确.····················································· (1分) 证明:在AB上取一点M,使AM?EC,连接ME. (2分)

D A

?BM?BE.??BME?45°,??AME?135°.

F M QCF是外角平分线,

??DCF?45°,

B E C G ??ECF?135°.

??AME??ECF.

Q?AEB??BAE?90°,?AEB??CEF?90°, ??BAE??CEF.

. ··································································· (5分) ?△AME≌△BCF(ASA)

························································································ (6分) ?AE?EF. ·

(2)正确. ····················································· (7分) 证明:在BA的延长线上取一点N. 使AN?CE,连接NE. ··································· (8分)

N F ?BN?BE. D A ??N??PCE?45°. Q四边形ABCD是正方形, ?AD∥BE.

B C E G

??DAE??BEA. ??NAE??CEF.

. ································································· (10分) ?△ANE≌△ECF(ASA)

······················································································ (11分) ?AE?EF. ·

11(09天津)已知一个直角三角形纸片OAB,其中

?AOB?90°,OA?2,OB?4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D. (Ⅰ)若折叠后使点B与点A重合,求点C的坐标; y

B

x O A (Ⅱ)若折叠后点B落在边OA上的点为B?,设OB??x,OC?y,试写出y关于x的函数解析式,并确定y的取值范围;

B y x O A

(Ⅲ)若折叠后点B落在边OA上的点为B?,且使B?D∥OB,求此时点C的坐标. y B

14 / 22

x O A 牟天昊专用

解(Ⅰ)如图①,折叠后点B与点A重合, 则△ACD≌△BCD.

设点C的坐标为?0,m??m?0?. 则BC?OB?OC?4?m. 于是AC?BC?4?m.

在Rt△AOC中,由勾股定理,得AC?OC?OA, 即?4?m??m2?22,解得m?22223. 2?3??点C的坐标为?0,?. ··················································································· 4分

2??(Ⅱ)如图②,折叠后点B落在OA边上的点为B?,

则△B?CD≌△BCD. 由题设OB??x,OC?y, 则B?C?BC?OB?OC?4?y,

在Rt△B?OC中,由勾股定理,得B?C?OC?OB?.

222??4?y??y2?x2,

12··························································································· 6分 x?2 ·

8由点B?在边OA上,有0≤x≤2,

1? 解析式y??x2?2?0≤x≤2?为所求.

8即y??2? Q当0≤x≤2时,y随x的增大而减小,

3···································································· 7分 ?y的取值范围为≤y≤2. ·

2(Ⅲ)如图③,折叠后点B落在OA边上的点为B??,且B??D∥OB. 则?OCB????CB??D. 又Q?CBD??CB??D,??OCB????CBD,有CB??∥BA. ?Rt△COB??∽Rt△BOA. OB??OC?有,得OC?2OB??. ·································································· 9分 OAOB在Rt△B??OC中,

设OB???x0?x?0?,则OC?2x0. 由(Ⅱ)的结论,得2x0??12x0?2, 8 15 / 22

牟天昊专用

解得x0??8?45.Qx0?0,?x0??8?45. ?点C的坐标为0,85?16. ··································································· 10分

??12(09太原)问题解决 F

M D 如图(1),将正方形纸片ABCD折叠,使点B落在CD边A 上一点E(不与点C,D重合),压平后得到折痕MN.当CE1AME 的值. ?时,求

CD2BN B C 方法指导: N

为了求得AM的值,可先求BN、AM的长,不妨设:AB=2 图(1)

BN

类比归纳

CE1AMCE1AM在图(1)中,若则的值等于 ;若则的?,?,CD3BNCD4BNCE1AM值等于 ;若,则的值等于 .(用含?(n为整数)

CDnBNn的式子表示) 联系拓广 如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,DAB1CE1AM重合),压平后得到折痕MN,设则的值等??m?1?,?,BCmCDnBN于 .(用含m,n的式子表示) F

M D A

E

B C N

图(2)

解:方法一:如图(1-1),连接BM,EM,BE.

F M A D

B

N )图(1-1

C E

16 / 22

牟天昊专用

由题设,得四边形ABNM和四边形FENM关于直线MN对称.

∴MN垂直平分BE.∴BM?EM,BN?EN. ···································· 1分 ∵四边形ABCD是正方形,∴?A??D??C?90°,AB?BC?CD?DA?2. ∵

CE1设BN?x,则NE?x, ?,?CE?DE?1.NC?2?x.CD2222 在Rt△CNE中,NE?CN?CE.

55,即BN?. ········································· 3分 44 在Rt△ABM和在Rt△DEM中,

AM2?AB2?BM2, DM2?DE2?EM2,

?AM2?AB2?DM2?DE2. ····························································· 5分

2222 设AM?y,则DM?2?y,∴y?2??2?y??1.

11 解得y?,即AM?. ····································································· 6分

44AM1 ∴ ····················································································· 7分 ?.BN55 方法二:同方法一,BN?. ································································ 3分

4 如图(1-2),过点N做NG∥CD,交AD于点G,连接BE.

∴x2??2?x??12.解得x?2

F G M A D

E

B C N

图(1-2)

∵AD∥BC,∴四边形GDCN是平行四边形. ∴NG?CD?BC.

同理,四边形ABNG也是平行四边形.∴AG?BN?. ∵MN?BE, ??EBC??BNM?90°. QNG?BC, ??MNG??BNM?90°,??EBC??MNG. 在△BCE与△NGM中

54??EBC??MNG,? ?BC?NG,∴△BCE≌△NGM,EC?MG. ························· 5分

??C??NGM?90°.? 17 / 22

牟天昊专用

∵AM?AG?MG,AM=∴

类比归纳

51 ····················································· 6分 ?1?.44AM1 ··················································································· 7分 ?.BN52?n?1? ·249(或);; ································································ 10分 251017n?1联系拓广

n2m2?2n?1 ······················································································ 12分 22nm?1

1.(2008,河北)如图所示,直线L1的解析表达式为y=-3x+3,且L1与x轴交于点D.直

线L2经过点A,B,直线L1,L2交于点C.

(1)求点D的坐标; (2)求直线L2的解析表达式; (3)求△ADC的面积;(4)在直线L2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.

2.(2005,长春市)如图a所示,矩形ABCD的两条边在坐标轴上,点D与原点重合,对角线BD所在直线的函数关系式为y=

3x,AD=8.矩形ABCD沿DB方向以每秒1?单位长度运动,4同时点P从点A出发做匀速运动,沿矩形ABCD的边经过点B到达点C,用了14s. (

1

ABCD

18 / 22

牟天昊专用

长.

(2)如图b所示,图形运动到第5s时,求点P的坐标; (3)设矩形运动的时间为t.当0≤t≤6时,点P所经过的路线是一条线段,?请求出线段所在直线的函数关系式; (4)当点P在线段AB或BC上运动时,过点P作x轴,y轴的垂线,垂足分别为E,F,则矩形PEOF是否能与矩形ABCD相似(或位似)?若能,求出t的值;若不能,说明理由.

3.(08金华)如图1,在平面直角坐标系中,己知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD。(1)求直线AB的解析式;(2)当点P运动到点(3,0)时,求此时DP的长及点D的坐标; (3)是否存在点P,使ΔOPD的面积等于

3,若存在,请求出符合条件的点P的坐标;若4不存在,请说明理由。

4.已知直线y=k x +b与x轴交于M,与y轴交于N(N点在M点上方),在直线上存在一点P(m,n)(m>0),连结OP,作PA垂直于OP交x轴于A(a,0)(a>0) (1)kb 0(填“>”、”<”或“=”);(1分)

3

(2)若y=1-x且n为20以内整数,y1=2/x1,y2=x2/2,当x1=x2=n时,(y1+y2)n/2的最小值;(5分) 19 / 22

牟天昊专用

5.如图,直线y?kx?6与x轴y轴分别交于点E、F,点E的坐标为(-8,0),点A的坐标为(-6,0)。 (1)求k的值; (2)若点P(x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围; E(3)探究:当点P运动到什么位置时,△OPA的面积为27A8,并说明理由。

1.(1)由y=-3x+3知,令y=0,得-3x+3=0, ∴x=1.∴D(1,0).

(2)设直线L2的解析式表达式为y=kx+b,

由图像知:直线L2过点A(4,0)和点B(3,-

32), ?4k?b?0,?3 ∴??,∴?k?, ∴直线3??3k?b??3?2?2L的解析表达式为y=x-6. ?b??6.2?y??3x?3, (3)由???x?2,??y?32x?6. 解得? ?y??3. ∴C(2,-3). ∵AD=3,∴S1△=2×3×│-3│=92. (4)P(6,3). 2.(1)AD=8,B点在y=

34x上,则y=6,B点坐标为(8,6),AB=6,矩形的周长为28. (2)由(1)可知AB+BC=14,P点走过AB,BC的时间为14s,

因此点P的速度为每秒1?个单位.

∵矩形沿DB方向以每秒1个单位长运动,出发5s后,OD=5,

此时D点坐标为(4,3)

同时,点P沿AB方向运动了5个单位,则点P坐标为(12,8).

20 / 22

yFox牟天昊专用

(3)点P运动前的位置为(8,0),5s后运动到(12,8)已知它运动路线是一条线段,设线段所在直线为y=kx+b. ∴??8k?b?0,k?b?8. 解得??k?2 直线解析式为y=2x-16.

?12?b??16. (4)方法一:

①当点P在AB边运动时,即0≤t≤6.

点D的坐标为(

45t,35t). ∴点P的坐标为(8+485t,5t).

8 若PEBAtOE?DA,则5=6,解得t=6.8?4 5t8 当t=6时,点P与点B重合,此时△PEO与△BAD相形.

8 若PEDA5tOE?BA,则88?4=,解得t=20. t65 因为20>6,所以此时点P不在AB边上,舍去. ②当点P在BC边运动时,即6≤t≤14.

点D的坐标为(45t,35t). ∴点P的坐标为(14-15t,35t+6).

3 若PEBAt?6OE?DA,则5=6,解得t=6. 14?15t8 此情况①已讨论.

3 若PEt?6OE?DABA,则5819014?1=,解得t=.

t6135 因为19013>14,此时点P不在BC边上,舍去.

综上,当t=6时,点P到达点B时,此时△PEO与△BAD相形. 方法二:

21 / 22

牟天昊专用

当点P在AB上没有到达点B时,

4PEBE3PE=,更不能等于. ?3OEOE4OE 则点P在AB上没到达点B时,两个三角形不能构成相似形. 当点P到达点B时,△PEO与△BAD相似,此时t=6. 当点P越过点B在BC上时,

PE3>. OE4 若

PE413=时,由点P在BC上时,坐标为(14-t,t+6),(6≤t≤14). OE3553t?64190190 5=,解得t=,但>14.

13131314?t5 因此当P在BC上(不包括点B)时,△PEO与△BAD不相似. 综上所述,当t=6时,点P到达点B,△PEO与△BAD是相似形. 4.解:(1)kb < 0

(2)y=1-x,那么M(1,0),N(0,1)

34

y1+y2= 2/n+n/2=(4+n)/2n

44

(y1+y2)n/2=(4+n)/4=1+ n/4

4

nmin=1

(y1+y2)n/2min=5/4

22 / 22

(完整)初中数学几何的动点问题专题练习

牟天昊专用动点问题专题训练1、(09包头)如图,已知△ABC中,AB?AC?10厘米,BC?8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速
推荐度:
点击下载文档文档为doc格式
49yow06saj9vfqx3d4pq7px008twst015dg
领取福利

微信扫码领取福利

微信扫码分享