好文档 - 专业文书写作范文服务资料分享网站

北师大版高中数学必修五《数列的概念》教案-新版

天下 分享 时间: 加入收藏 我要投稿 点赞

1.1 数列的概念

教学目标

1.通过教学使学生理解数列的概念,了解数列的表示法,能够根据通项公式写出数列的项.

2.通过数列定义的归纳概括,初步培养学生的观察、抽象概括能力;渗透函数思想.

3.通过有关数列实际应用的介绍,激发学生学习研究数列的积极性. 教学重难点

教学重点是数列的定义的归纳与认识; 教学难点是数列与函数的联系与区别.

教学过程 一.揭示课题

先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数 (板书)

(板书)第一章 数列 (一)数列的概念 二.讲解新课

要研究数列先要知道何为数列,即先要给数列下定义,为帮助同学概括出数列的定义,再给出几列数:

①各排钢管的数量:3,4,5,6,7,8,9

②我国1998~2002年GDP值(亿元):78345 82067 89442 95933 102389 ③五次人口普查的数量(百万):60193 72307 103188 116002 129533

象这样排好队的数就是我们的研究对象——数列.

④正弦函数y?sinx的图像在y轴左边所有最低点从右向左,它们的横坐标依

次排成一列数:?⑤正整数

?2 ?9?13?17?5? ? ? ? ……

2222

111的倒数排成一列数:1,,,……

234 ⑥某人2006年1~~12月工资,按月顺序排列为:1100 1100 1100 …… 1100 ⑦函数y?1当 依次取1,2,3,...,n(n?N?)时得到一列数:2x1111,,,...,2 49n 请学生观察7列数,说明每列数就是一个数列,数列中的每个数都有自己的特定的位置,这样数列就是按一定顺序排成的一列数. (板书)1.数列的定义:按一定次序排成的一列数叫做数列.

为表述方便给出几个名称:项,项数,首项(以幻灯片的形式给出).以上述七个数列为例,让学生练习指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.

由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,……,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系. 对概念的理解

数集中的元素具有确定性,互异性,无序性,那么数列中的项是否具有这些属性? 教师提出问题:

1:1,2,3,4与4,3,2,1是否为同一数列? 2: -1,1,-1,1是否为一个数列?

遇到数学概念不但要下定义,还要给其数学表示,以便研究与交流,下面探讨数列的表示法. (板书)2.数列的表示法

数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法.相对于列表法表示一个函数,数列有这样的表示法:用 项,依次写出成为

表示第一项,用

表示第一项,……,用

表示第

(板书)(1)列举法

. 简记为 .

一个函数的直观形式是其图象,我们也可用图形表示一个数列,把它称作图示法.

(板书)(2)图示法

启发学生仿照函数图象的画法画数列的图形.具体方法是以项数 为横坐标,相应的项

为纵坐标,即以

为坐标在平面直角坐标系中做出点(以

111前面提到的数列 1,,,…为例,做出一个数列的图象),所得的数列的图形

234是一群孤立的点,因为横坐标为正整数,所以这些点都在 轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.

有些函数可以用解析式来表示,解析式反映了一个函数的函数值与自变量之间的数量关系,类似地有一些数列的项能用其项数的函数式表示出来,即

,这个函数式叫做数列的通项公式.

(板书)(3)通项公式法 认识数列的通项公式

数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法。对应于函数的解析式法,认识数列的通项公式。

如 1100 1100 1100 …… 1100的通项公式为 an?1100 (1?n?12)

11111,,,… 的通项公式为an?n?N?; 234n 数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项. 例如,数列

的通项公式

,则

值得注意的是,正如一个函数未必能用解析式表示一样,不是所有的数列都有通项公式,即便有通项公式,通项公式也未必唯一.

北师大版高中数学必修五《数列的概念》教案-新版

1.1数列的概念教学目标1.通过教学使学生理解数列的概念,了解数列的表示法,能够根据通项公式写出数列的项.2.通过数列定义的归纳概括,初步培养学生的观察、抽象概括能力;渗透函数思想.3.通过有关数列实际应用的介绍,激发学生学习研究数列的积极性.教学重难点教学重点是数列的定义的归纳与认识;教学难点是数列与
推荐度:
点击下载文档文档为doc格式
49wo935dcq6gjog0oh073pit886azp004tf
领取福利

微信扫码领取福利

微信扫码分享