2.21
a/4(a) P????2?2?0?a??sin?2?x??a??dx ??4?x??a ???2??sin???x?a??/4??a????2??4??2???
?a????0?? ???2???asin??????a????8??
??8???a?????or P?0.25
a/2(b) P???2??sin2?2?x?a?/4?a???a??dx ??4 ???2??xsin??x????a/2?a????a????2??4??2???a??
???a/4
?????2???asin?2???a?sin??????a????4?????? ??8???a??8??8??????a????or P?0.25
?a/2(c) P???2??sin2??2?x???a?/2?a??a?dx ?sin??4?x???a/2 ???2???a??a??x?????2???2??
?4???a?????a/2
????2????asin?2????a?sin??2????a????4???8???4??8?? ????????a????a????or P?1
_______________________________________ 2.22
(a) (i) ??8?1012p?k?8?108?104m/s or ?p?106cm/s
??2?k?2?8?108?7.854?10?9m
or ??78.54Ao (ii)p?m???9.11?10?31??104?
?9.11?10?27kg-m/s
E?1m?2?12?9.11?10?31??104?22
?4.555?10?23J
E?4.555?10?23or 1.6?10?19?2.85?10?4eV (b) (i) ??1.5?10134p?k??1.5?109??10m/s or ?p??106cm/s
??2?k?2?1.5?109?4.19?10?9m or ??41.9Ao
(ii) p??9.11?10?27kg-m/s
E?2.85?10?4eV
_______________________________________ 2.23
(a) ??x,t??Ae?j?kx??t? (b) E??0.025??1.6?10?19??12m?2 ?12?9.11?10?31??2 so
??9.37?104m/s?9.37?106cm/s
For electron traveling in ?xdirection, ???9?.37?106cm/s
p?m??9.11?10?31???9.37?104?
??8.537?10?26kg-m/s
?h6.625p??10?34?8.537?10?26?7.76?10?9m
k?2???2?7.76?10?9?8.097?108m?1 ??k????8.097?108??9.37?104?
or ??7.586?1013rad/s
_______________________________________ 2.24
(a) p?m???9.11?10?31??5?104?
?4.555?10?26kg-m/s
??h?6.625?10?34?1.454?10?8p4.555?10?26m
k?2??2??4.32?108m?1?1.454?10?8 ??k???4.32?108??5?104?
?2.16?1013rad/s (b) p??9.11?10?31??106?
?9.11?10?25kg-m/s
??6.625?10?34 9.11?10?25?7.27?10?10m k?2??8.64?109m?17.272?10?10 ?
??8.64?109??106??8.64?1015rad/s
_______________________________________ 2.25
2222E?n???34?22n?n12ma2?.054?10?2?9.11?10?31??75?10?10?2
E2n?n?1.0698?10?21?J
or
En2 ?1.0698?10?21 ?n??1.6?10?19 or E2n?n6.686?10?3?eV Then
E1?6.69?10?3eV
E2?2.67?10?2eV
E3?6.02?10?2eV
_______________________________________ 2.26
?34(a) E??2n2?2n21.054?10?2?2n2ma2?29.11?10?3110?10?10 ?n2???6.018?10?20????2J
or
n2?6.018?10?20E?n?1.6?10?19?n2?0.3761?eV Then
E1?0.376eV E2?1.504eV
E3?3.385eV
(b) ??hc?E ?E??3.385?1.504??1.6?10?19?
?3.01?10?19J
???6.625?10?34??3?108 ?3.01?10?19
?6.604?10?7m or ??660.4nm
_______________________________________ 2.27
?2n2?2(a) En?2ma2
2 15?10?3?n21.054?10?34?22??15?10?31.2?10?2
15?10?3?n2????2.538?10?62??2 or n?7.688?1029 (b) En?1?15mJ (c) No
_______________________________________ 2.28
For a neutron and n?1:
E?2?21.054?10?34?2 1?2ma2?2??1.66?10?27???210?14?2
?3.3025?10?13J
or
E3.3025?10?1361?1.6?10?19?2.06?10eV For an electron in the same potential well:?3422 E??1.054?10??12?9.11?10?31??10?14?2
?6.0177?10?10J or
E6.0177?10?10 91?1.6?10?19?3.76?10eV _______________________________________ 2.29
Schrodinger's time-independent wave equation
?2??x?2m?x2??2?E?V?x????x??0
We know that
??x??0 for x?a?a2 and x?2
We have
V?x??0 for ?a2?x??a2
so in this region
?2??x?2mE?x2??2??x??0 The solution is of the form ??x??Acoskx?Bsinkx where
k?2mE?2 Boundary conditions: ??x??0 at x??a2,x??a2 First mode solution:
?1?x??A1cosk1x where
k??2?2 1?a?E1?2ma2
Second mode solution: ?2?x??B2sink2x where
k2?4?2?2 2?a?E2?2ma2 Third mode solution: ?3?x??A3cosk3x where
3?9?2?2 k3?a?E3?2ma2 Fourth mode solution: ?4?x??B4sink4x where
k4?16?2?2 4?a?E4?2ma2 _______________________________________
2.30
The 3-D time-independent wave equation in
cartesian coordinates for V?x,y,z??0 is:
?2??x,y,z??2??x,y,z??2??x,y,z??x2??y2??z2 ?2mE?2??x,y,z??0 Use separation of variables, so let? ??x,y,z??X?xY?y?Z?z?
Substituting into the wave equation, we obtain
?2X?2 YZ?x2?XZY?2Z?y2?XY?z2
?2mE?2XYZ?0 Dividing by XYZ and letting
k2?2mE?2, we
find
(1)
1X??2X1?2Y1?2Z?x2?Y??y2?Z??z2?k2?0 We may set
1?2 X?X2?2X2?x2??kx??x2?kxX?0 Solution is of the form
X?x??Asin?kxx??Bcos?kxx? Boundary conditions: X?0??0?B?0 and X?x?a??0?knx?x?a where nx?1,2,3.... Similarly, let
1??2Y21?2Z2Y?y2??ky and Z??z2??kz
Applying the boundary conditions, we find
kny?y?a, ny?1,2,3....
knz?z?a, nz?1,2,3... From Equation (1) above, we have
?k2x?k22y?kz?k2?0 or
k2222x?ky?kz?k?2mE?2 so that
E?E?2?2?222nxnynz?2ma2nx?ny?nz? _______________________________________ 2.31 (a)
?2??x,y??2?x2???x,y??y2?2mE?2???x,y??0 Solution is of the form:
??x,y??Asinkxx?sinkyy
We find
???x,y??x?Akxcoskxx?sinkyy ?2 ??x,y?2?x2??Akxsinkxx?sinkyy
???x,y??y?Akysinkxx?coskyy
?2??x,y??y2??Ak2ysinkxx?sinkyy
Substituting into the original equation, we find:
(1) ?k222mEx?ky??2?0
From the boundary conditions, Asinkxa?0, where a?40Ao So knx?x?a, nx?1,2,3,... Also Asinkoyb?0, where b?20A So kny?y?b, ny?1,2,3,... Substituting into Eq. (1) above
22 E?2?n?n2x?n2y???xny?2m? ?a2?b2??(b)Energy is quantized - similar to 1-D result. There can be more than one quantum state
per given energy - different than 1-D result.
_______________________________________ 2.32
(a) Derivation of energy levels exactly the
same as in the text
?2(b) ?E??2?n222ma22?n1? For n2?2,n1?1 Then
?E?3?2?2 2ma2 (i) For a?4Ao ?E?31.054?10?34?2?22??1.67?10?27??4?10?10?2
?6.155?10?22J
6.155?10?22 or ?E??31.6?10?19?3.85?10eV
(ii) For a?0.5cm
?E?3?1.054?10?34?2?22?1.67?10?27??0.5?10?2?2
?3.939?10?36J or
?3.939?10?36?E?171.6?10?19?2.46?10eV _______________________________________ 2.33
(a) For region II, x?0
?2?2?x??x2?2m?2?E?VO??2?x??0
General form of the solution is
?2?x??A2exp?jk2x??B2exp??jk2x? where
k2m2??2?E?VO?
Term with B2 represents incident wave and
term with A2 represents reflected wave. Region I, x?0
?2 ?1?x?2mE?x2??2?1?x??0 General form of the solution is
?1?x??A1exp?jk1x??B1exp??jk1x? where
k2mE1??2
Term involving B1 represents the
transmitted wave and the term involving A1represents reflected wave: but if a particle is transmitted into region I, it will not be reflected so that A1?0. Then
?1?x??B1exp??jk1x?
?2?x??A2exp?jk2x??B2exp??jk2x? (b)
Boundary conditions: (1) ?1?x?0???2?x?0?
(2) ??1??2?x? x?0?xx?0 Applying the boundary conditions to the solutions, we find
B1?A2?B2
k2A2?k2B2??k1B1
Combining these two equations, we find A?k2?k1?2????k2?k?1???B2
B?2k2?1????k?k???B2
21? The reflection coefficient is
R?A*22A2BB*???k?2?k1??k?k?? 2221? The transmission coefficient is
T?1?R?T?4k1k2?k?k2 12?_______________________________________
2.34
?2?x??A2exp??k2x? P???x?2A*?exp??2k2x?
2A2 where k2m?Vo?E?2??2
?2?9.11?10?31??3.5?2.8??1.6?10?19?1.054?10?34
k2?4.286?109m?1
(a) For x?5Ao?5?10?10m P?exp??2k2x? ? ?
?exp?24.2859?109??5?10?10?? ?0.0138
(b) For x?15Ao?15?10?10m ?
P?exp?2?4.2859?109??15?10?10??
?2.61?10?6 (c) For x?40Ao?40?10?10m
P?exp??2?4.2859?109??40?10?10??
?1.29?10?15
_______________________________________ 2.35
T?16???E?????V1?E??exp??2k2a? o????Vo?? where k2m?Vo?E?2??2
?31?29.11?10???1.0?0.1??1.6?10?19?1.054?10?34
or k2?4.860?109m?1
(a) For a?4?10?10m
T?16??0.1??1.0?????1?0.1?1.0??exp??2?4.85976?109??4?10?10?? ?0.0295
(b) For a?12?10?10m