解题技巧专题:平行线中作辅助线的方法
——形成思维定式,快速解题
◆类型一 含一个拐点的平行线问题 1.(2017·南充中考)如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放.若∠1=58°,则∠2的度数为( )
A.30° B.32° C.42° D.58°
第1题图 第2题图
2.(2017·潍坊中考)如图,∠BCD=90°,AB∥DE,则∠α与∠β满足( ) A.∠α+∠β=180° B.∠β-∠α=90° C.∠β=3∠α D.∠α+∠β=90°
3.阅读下列解题过程,然后解答后面的问题. 如图①,已知AB∥CD,∠B=35°,∠D=32°,求∠BED的度数. 解:过E作EF∥AB.∵AB∥CD,∴CD∥EF.∵AB∥EF,∴∠1=∠B=35°.又∵CD∥EF,∴∠2=∠D=32°,∴∠BED=∠1+∠2=35°+32°=67°.
如图②、图③,是明明设计的智力拼图玩具的一部分,现在明明遇到两个问题,请你帮他解决. (1)如图②,已知∠D=30°,∠ACD=65°,为了保证AB∥DE,∠A应多大? (2)如图③,要使GP∥HQ,则∠G,∠GFH,∠H之间有什么关系?【方法4】
◆类型二 含多个拐点的平行线问题 4.如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的大小为【方法4】( ) A.20° B.30° C.40° D.70°
第4题图 第5题图
5.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2的度数为________.
6.如图,给出下列三个论断:①∠B+∠D=180°;②AB∥CD;③BC∥DE.请你以其中两个论断作为已知条件,填入“已知”栏中,以剩余一个论断作为结论,填入“结论”栏中,使之成为一道由已知可得到结论的题目,并解答该题.
已知:______________,结论:______________. 解:
7.如图①,AB∥CD,EOF是直线AB,CD间的一条折线.【方法4】 (1)试说明:∠EOF=∠BEO+∠DFO;
(2)如果将折一次改为折两次,如图②,则∠BEO,∠EOP,∠OPF,∠PFC之间会满足怎样的数量关系?并说明理由.
参考答案与解析
1.B 2.B
3.解:(1)∠A=∠ACD-∠D=35°.
(2)过点F向右作FM∥PG.∵GP∥HQ,∴FM∥HQ,∴∠G+∠MFG=180°,∠H+∠MFH=180°,∴∠G+∠GFH+∠H=360°.
4.B 解析:如图,过C向右作CM∥AB.∵AB∥DE,∴DE∥CM.∵∠ABC=70°,∠CDE=140°,∴∠BCM=70°,∠DCM=180°-140°=40°,∴∠BCD=∠BCM-∠DCM=70°-40°=30°.
5.140° 解析:如图,延长AE交l2于点B.∵l1∥l2,∴∠3=∠1=40°.∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°-∠3=180°-40°=140°.
6.解:①② ③ ∵AB∥CD,∴∠B=∠C.又∵∠B+∠D=180°,∴∠C+∠D=180°,∴BC∥DE(答案不唯一).
7.解:(1)如图①,过O向左作OM∥AB,∴∠1=∠BEO.∵AB∥CD,∴OM∥CD,∴∠2=∠DFO,∴∠1+∠2=∠BEO+∠DFO,即∠EOF=∠BEO+∠DFO.
(2)∠EOP+∠PFC=∠BEO+∠OPF.理由如下:如图②,过O向左作OQ∥AB,过P向右作PN∥CD.∵AB∥CD,∴OQ∥PN∥AB∥CD,∴∠1=∠BEO,∠2=∠3,∠4=∠PFC,∴∠1+∠2+∠PFC=∠BEO+∠3+∠4,∴∠EOP+∠PFC=∠BEO+∠OPF.