所以a7==256.
答案:256
6.(2014·广东高考)等比数列{an}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=. 【解析】各项均为正数的等比数列{an}中a1a5=a2a4=log2a1+log2a2+log2a3+log2a4+log2a5 =log2(a1a2a3a4a5)=log22=5. 答案:5
【一题多解】各项均为正数的等比数列{an}中a1a5=a2a4=设log2a1+log2a2+log2a3+log2a4+log2a5=S, 则log2a5+log2a4+log2a3+log2a2+log2a1=S, 2S=5log2(a1a5)=10,S=5. 答案:5
【变式训练】在等比数列{an}中,若an>0,a1·a100=100,则 lga1+lga2+lga3+…+lga100=. 【解析】由等比数列性质知: a1·a100=a2·a99=…=a50·a51=100. 所以lga1+lga2+lga3+…+lga100 =lg(a1·a2·a3·…·a100)
=lg(a1·a100)=lg100=lg10=100. 答案:100
三、解答题(每小题12分,共24分)
7.已知等比数列{an}中,a2a6a10=1,求a3·a9的值. 【解析】由等比数列的性质,有a2a10=a3a9=由a2·a6·a10=1,得所以a6=1,所以a3a9=
=1, =1.
,
50
50
100
5
=4,则a1a2a3a4a5=2,
5
=4,
【一题多解】由等比数列通项公式, 得a2a6a10=(a1q)(a1q)(a1q) =
·q=(a1q)=1,
15
53
5
9
所以a1q=1,所以a3a9=(a1q)(a1q) =(a1q)=1.
8.设{an}是各项均为正数的等比数列,bn=log2an,b1+b2+b3=3,b1b2b3=-3,求an. 52852
【解析】设数列{an}的首项为a1,公比为q, 因为b1+b2+b3=3,
所以log2a1+log2a2+log2a3=3, 所以log2(a1a2a3)=3,所以a1a2a3=8, 所以a2=2.因为b1b2b3=-3, 所以log2a1·log2a2·log2a3=-3, 所以log2a1·log2a3=-3,
所以log2·log2a2q=-3,
即(log2a2-log2q)·(log2a2+log2q)=-3, 即(1-log2q)·(1+log2q)=-3,解得log2q=±2,
当log2q=2时,q=4,a1==,
所以a2n-3
n=×4n-1=2
.
当log2q=-2时,q=,a1==8,
所以a1n=8×()n?14=2
5-2n
.
关闭Word文档返回原板块