好文档 - 专业文书写作范文服务资料分享网站

(完整word版)2017人教版七年级上数学教案(全册)

天下 分享 时间: 加入收藏 我要投稿 点赞

学生若有困难,教师可提示:所得的结果与绝对值符号内的数有什么关系?

从而得出绝对值的代数意义: (1)一个正数的绝对值是它本身;

(2)零的绝对值是零;

(3)一个负数的绝对值是它的相反数.

我们用a表示任意一个有理数,上述式子可以表示为:

①当a是正数时,│a│=_______; ②当a是负数时,│a│=_______; ③当a=0时,│a│=_______. 以上先让学生填空,然后让学生给a?取一些具体数值检验所填写的结果是否正确.

教师问: (1)任何一个有理数都有绝对值吗?一个数的绝对值有几个? (2)有没有一个数的绝对值等于-2?任何一个数的绝对值一定是怎样的数?

(3)绝对值等于2的数有几个?它们是什么? 归纳: ①任何有理数都有唯一的绝对值,任意一个数的绝对值总是正数或0,?不可能是负数,即对任意有理数a,总有│a│≥0. ②两个互为相反数的绝对值相等,即│a│=│-a│. ③因为0的绝对值是0,而0的相反数是它本身0,因此可知绝对值等于它本身的数是正数或者零,绝对值等于它的相反数的数是负数或零. 六、巩固练习 1.课本第12页练习1、2题. 第1题强调书写格式,防止出现“-8=8”的错误. 第2题(1)错,如3与-2的符号相反,但它们不是互为相反数,?应改为“只有大小相等符号相反的数是互为相反数”.(2)正确.(3)错,因为这个点也可能越靠左,应改为:“一个数

的绝对值越大,表示它的点离原点越远.”(4)正确.

七、课堂小结

理解绝对值的几何意义和代数意义.从几何意义可知,一个数的绝对值是表示该数的点与原点的距离,因为距离总是正数和零,所以有理数的绝对值不可能是负数,从绝对值的代数定义也可

进一步理解这一点. 来源于网络

引入绝对值概念后,有理数可以理解为由性质符号和绝对值两部分组成的,如-5就是由“-”

号和它的绝对值5两部分组成.

八、作业布置

1.课本第15页习题1.2第4、7、10题.

九、板书设计: 1.2.4 绝对值 第四课时

①任何有理数都有唯一的绝对值,任意一个数的绝对值总是正数或0,?不可能是负数,即对任意有理数a,总有│a│≥0. ②两个互为相反数的绝对值相等,即│a│=│-a│. ③因为0的绝对值是0,而0的相反数是它本身0,因此可知绝对值等于它本身的数是正数或者零,绝对值等于它的相反数的数是负数或零. 2、随堂练习。 3、小结。 4、课后作业。 十、课后反思 1.2.4 绝对值 第五课时 三维目标 一、知识与技能 掌握有理数的大小比较的两种方法──利用数轴和绝对值. 二、过程与方法 经历利用绝对值以及利用数轴比较有理数的大小,进一步体会“数形结合”的数学方法,培养学生分析、归纳的能力. 三、情感态度与价值观

会把所学知识运用于解决实际问题,体会数学知识的应用价值.

教学 重、难点与关键

1.重点:会利用绝对值比较有理数的大小.

2.难点:两个负数的大小比较. 3.关键:正确理解绝对值的概念. 来源于网络

四、教学过程 一、复习提问,引入新课 用“>”、“<”号填空.

1.5.7______6.3; 2.

23_____; 3.0.03_______0; 7823 4.│-3│_______│2│; 5.│-│_______│-│.

32 五、新授

引入负数后,如何比较两个有理数的大小呢?让我们从熟悉的温度来比较,大家观察课本第12页中“未来一周天气预报”. 1.课本图1.2-6中共有14个温度,其中最低的是多少?最高的是多少?

2.请你将这14个温度按从低到高的顺序排列. 课本图1.2-6中的14个温度按从低到高排列为: -4℃,-3℃,-2℃,-1℃,0℃,1℃,2℃,3℃,4℃,5℃,6℃,7℃,8℃,9℃. 按照这个顺序排列的温度,在温度计上所对应的点是从下到上的,按照这个顺序把这些数表示在数轴上,表示它们的各点的顺序是从左到右的,如课本图1.2-?7,这就是说在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数,因此,我们可以利用数轴比较有理数的大小. 例如在数轴上表示-6的点在表示-5的点的左边,所以-6<-5. 1 同样-5<-4,-3<-3,-2<0,-1<1,… 2 从数轴上可知: 表示正数的点都在原点的右边;表示负数的点都在原点左边. 因此有正数大小0,0大于负数,正数大于负数. 两个正数的大小比较小学已学过,不画数轴你会比较两个负数的大小吗?

探索: 我们知道,在数轴上越靠左边的点所表示的数越小,而这个点与原点的距离越大,即这个点

所表示的数的绝对值越大,因此,我们还可以利用绝对值比较两个负数的大小.

即两个负数,绝对值大的反而小.

例如:│-2│=2,│-5│=5,即│-2│<│-5│,因此-2>-5.

同样│-1│<│-3│,所以-1>-3. 例1:比较下列各对数的大小: 来源于网络

831 (1)-(-1)和-(+2); (2)-和-; (3)-(-0.3)和│-│.

2173 解:(1)先化简,-(-1)=1,-(+2)=-2,

正数大于负数,1>-2. 即 -(-1)>-(+2).

(2)这是两个负数比较大小,要比较它们的绝对值,绝对值大的反而小.

88339│=,│-│==. 212177218983 因为<,即│-│<│-│, 212121783 所以->-. 217.11 (3)先化简,-(-0.3)=0.3,│-│==0.3, 331 0.3<0.3,即-(-0.3)<│-│. 3 │-

初学时,要求学生按以上步骤进行,能化简的要先化简,?然后按照有理数的大小比较法则:异号两数比较大小,要考虑它们的正负,根据“正数大于负数”,?同号两数比较大小,要考虑它们的绝对值,特别是两个负数大小比较,先各自求出它们的绝对值,然后依法则:两个负数,绝对值大的反而小,比较绝对值大小后,即可得出结论. 例2:已知a>0,b<0且│b│>│a│,比较a,-a,b,-b的大小. 解:方法一,可通过数轴来比较大小,先在数轴上找出a,-a,b,-b?的大致位置,再比较.

由a>0,b<0可知表示a的点在原点的右边,表示b的点在原点的左边;由│b│>?│a│,可知表示b的点离开原点的距离更远,即它应在表示a的点的左边,?然后再根据两个互为相反数在数轴上所表示的点在原点两边,且与原点距离相等即可得到下图. 根据数轴上,较左边的点所表示的数较小,可得: b<-a

2.补充练习:

(1)比较大小,并用“<”连结.

①-375,-,-;②-(-10),-│-10│,9,-│+18│,0. 4126(2)有理数a,b在数轴上的表示如下图,用“>”或“<”号填空.

11 ①a_____b; ②│a│_____│b│; ③-a_____-b; ④_____.

ab 来源于网络

七、全课小结(提问式) 比较有理数的大小有哪几种方法?

有两种方法,方法一:利用数轴,把这些数用数轴上的点表示出来,然后根据“数轴上较左

边的点所表示的数比较右边的点所表示的数小”来比较.

方法二:利用比较法则:“正数大于零,负数小于零,两个负数比较绝对值大的反而小”来

进行.

在比较有理数的大小前,要先化简,从而知道哪些是正数,哪些是负数.

八、作业布置 1.课本第15页习题1.2第5、6、8题. 九、板书设计: 1.2.4 绝对值 第五课时 1、表示正数的点都在原点的右边;表示负数的点都在原点左边. 因此有正数大小0,0大于负数,正数大于负数. 2、随堂练习。 3、小结。 4、课后作业。 十、课后反思 1.3.1 有理数的加法(1) 第一课时 三维目标 一、知识与技能 理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算.

二、过程与方法 引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、

概括能力.

三、情感态度与价值观

培养学生主动探索的良好学习习惯.

教学重、难点与关键

1.重点:掌握有理数加法法则,会进行有理数的加法运算.

来源于网络

(完整word版)2017人教版七年级上数学教案(全册)

学生若有困难,教师可提示:所得的结果与绝对值符号内的数有什么关系?从而得出绝对值的代数意义:(1)一个正数的绝对值是它本身;(2)零的绝对值是零;(3)一个负数的绝对值是它的相反数.我们用a表示任意一个有理数,上述式子可以表示为:①当a是正
推荐度:
点击下载文档文档为doc格式
46ewy1f19j6h1tx45d7638ccg96mxg006xx
领取福利

微信扫码领取福利

微信扫码分享