北师大版六年级数学下册总复习运算律教学设
计
集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-
北师大版六年级数学下册总复习《运算律》教学设计
一、 教材分析
运算律包括加法交换律、加法结合律、乘法交换率、乘法结合律、乘法对加法的分配律。这些运算律在数与运算中起着重要的作用;在数系的扩充过程中,也起着非常重要的作用。教材给出的前两个问题,是互相联系的。教材首先回顾和总结学过的整数运算律,鼓励学生用字母表示,并鼓励学生用多种方式验证这些运算律,以帮助学生整理和复习所学过的运算律。接着教材引导学生再次认识到整数运算律在小数、分数运算中仍然成立,使学生初步感受在数系的扩充过程中,人们总是希望在新的数系中运算律能尽量的成立。 二、学习目标
1、理解并掌握加法运算律和乘法运算律,并能够用字母来表示。 2、能运用运算定律进行一些简便运算。
3、能根据具体情况,选择算法,发展思维的灵活性。
4、在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,进一步形成独立思考和探究问题的意识、习惯。 三,教学重难点:
理解并掌握加法运算律和乘法运算律,及这些运算律在数与运算中的重要的作用。
四、教学过程( )
(一)、创设情境,导入复习
1、小心谨慎找朋友:请用直线连一连。
72— 28 56---44 178—22 246---54 125---8 25---4
2、说一说你为什么这样连
3、我们进行简便计算的依据是什么---运算律
4、揭题:今天我们就来对运算律和简便计算进行整理和复习。(出示课题:运算律)
(二)、回顾整理,构建网络。
1、回顾和总结学过的整数运算律。(指名学生说一说)(显示课件,分别复习运算律的文字叙述,和字母公式)
(1)加法交换律 a+b=b+a (2)加法结合律 (a+b)+c=a+(b+c) (3)乘法交换律 a×b=b×a (4)乘法结合律 (a×b)c=a(b×c)
(5)乘法对加法的分配律。(a+b)×c=a×c+b×c
2、用多种方式验证这些运算律。(完成79页第1题的第2小题,由学生举例子,由其他全体学生判断正确与否)
(1)谁能举一些例子来证明加法的运算定律(课件出示) (2)谁能举一些例子来证明乘法的运算定律(课件出示) 3、完成练习
下面算式都应用了什么运算定律
5+7+5=5+5+7 25×18×4=25×4×18 39×125×8=39×(125×8)95+51+49=95+(51+49) 45×19+45×81=45×(19+81) 41×99=41×(100-1)
128-56-44=128-(56+44) 810÷45÷2=810÷(45×2)
这两道分别应用了什么运算定律。(减法性质和除法性质)
4、认识到整数运算律在小数、分数运算中仍然成立。(完成79页第2题,举例说明。)
(利用表格让学生填一填,并在讲台上展示) (三)、重点复习,强化提高
1、计算25×48并说一说你是怎样想的。 (1)学生独立完成后教师指名回答。 (2)把几种算法进行比较。 2、应用运算律进行简便计算
46+32+54 546+785-146 +++ 25×49×4 8×(36×125) 8×4×× ×+× 905×99+905 13×(10+.2) 3、怎样简便怎样计算 × ×99+×10 16÷
学生集体训练,练后说说你是怎样想的。(像这样的题目根据给出的数
据,我们无法简便,但可以根据计算的需要将其中某个数拆开重新组合就能使计算简便,实际上这个过程也蕴涵着加法乘法、加法的运算律。)
4、完成课本79页第3题
五、教学反思: 教学中要多地让学生交流讨论,让学生在一个互补互助的环境中得到充分锻炼。巩固练习部分的练习,给予一定的引导,使
学生通过大量练习来获得熟练度,教师及时总结。最后把一些需要运算技巧的题放入拓展延伸部分,开放讨论,让学生在活跃的气氛中提高理解水平,拓展数学视野。