高一数学学案NO15,16
余弦定理、正弦定理应用举例
学 习 目 标 核 心 素 养 1.能将实际问题转化为解三角形问1.通过利用正、余弦定理解决实际问题,题.(难点) 培养数学建模的核心素养. 2.能够用正、余弦定理求解与距离、2.通过求解距离、高度等实际问题,高度、角度有关的实际应用问题.(重点) 提升数学运算的素养.
1.基线的概念与选择原则 (1)定义
在测量过程中,我们把根据测量的需要而确定的线段叫做基线. (2)性质
在测量过程中,应根据实际需要选取合适的基线长度,使测量具有较高的精确度.一般来说,基线越长,测量的精确度越高.
思考1:在本章“解三角形”引言中,我们遇到这么一个问题,“遥不可及的月亮离地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?
2.测量中的有关角的概念 (1)仰角和俯角
与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角.(如图所示)
(2)方向角
1
从指定方向线到目标方向线所成的水平角.如南偏西60°,即以正南方向为始边,顺时针方向向西旋转60°. (如图所示)
思考2:李尧出校向南前进了200米,再向东走了200米,回到自己家中,你认为李尧的家在学校的哪个方向?
1.如图,为了测量隧道口AB的长度,给定下列四组数据,测量时应选用数据( )
A.α,a,b C.a,b,γ
B.α,β,a D.α,β,b
2.小强站在地面上观察一个建在山顶上的建筑物,测得其视角为α,同时测得观察该建筑物顶部的仰角为β,则小强观测山顶的仰角为( )
A.α+β C.β-α
B.α-β D.α
3.某人先向正东方向走了x km,然后他向右转150°,向新的方向走了3 km,结果他离出发点恰好为3 km,那么x的值为( )
A.3 C.23或3
测量距离问题 【例1】 海上有A,B两个小岛相距10 海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B,C间的距离是( )
A.103 海里 C.52 海里
106
B.3 海里 D.56 海里
2
B.23 D.3
三角形中与距离有关问题的求解策略:
(1)解决与距离有关的问题,若所求的线段在一个三角形中,则直接利用正、余弦定理求解即可;若所求的线段在多个三角形中,要根据条件选择适当的三角形,再利用正、余弦定理求解.
(2)解决与距离有关的问题的关键是转化为求三角形中的边,分析所解三角形中已知哪些元素,还需要求出哪些元素,灵活应用正、余弦定理来解决.
1.为了测定河的宽度,在一岸边选定两点A,B,望对岸标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则河的宽度为 m.
测量高度问题
【例2】 济南泉城广场上的泉标模仿的是隶书“泉”字,其造型流畅别致,成了济南的标志和象征.李明同学想测量泉标的高度,于是他在广场的A点测得泉标顶端的仰角为60°,他又沿着泉标底部方向前进15.2 m,到达B点,又测得泉标顶部仰角为80°.你能帮助李明同学求出泉标的高度吗?(精确到1 m)
解决测量高度问题的一般步骤: (1)画图:根据已知条件画出示意图. (2)分析三角形:分析与问题有关的三角形.
(3)求解:运用正、余弦定理,有序地解相关的三角形,逐步求解.在解题中,要综合运用立体几何知识与平面几何知识,注意方程思想的运用.
3
2.某兴趣小组要测量电视塔AE的高度H(单位:m).如图所示,竖直放置的标杆BC的高度h=4 m,仰角∠ABE=α,∠ADE=β.该小组已测得一组α,β的值,算出了tan α=1.24,tan β=1.20,请据此算出H的值.
角度问题 [探究问题]
1.某物流投递员沿一条大路前进,从A到B,方位角是60°,距离是4 km,从B到C,方位角是120°,距离是8 km,从C到D,方位角是150°,距离是3 km,试画出示意图.
2.在探究1中,若投递员想在半小时之内,沿小路直接从A点到C点,则此人的速度至少是多少?
3.在探究1中若投递员以24 km/h的速度匀速沿大路从A到D前进,10分钟后某人以167 km/h的速度沿小路直接由A到C追投递员,问在C点此人能否与投递员相遇?
【例3】 如图,甲船在A处,乙船在A处的南偏东45°方向,距A有9海里的B处,并以20海里每小时的速度沿南偏西15°方向行驶,若甲船沿南偏东θ度的方向,并以28海里每小时的速度行驶,恰能在C处追上乙船.问用多少小时追上乙船,并求sin θ的值.(结果保留根号,无需求近似值)
4
(变条件,变结论)在本例中,若乙船向正南方向行驶,速度未知,而甲船沿南偏东15°的方向行驶恰能与乙船相遇,其他条件不变,试求乙船的速度.
解决实际问题应注意的问题
(1)首先明确题中所给各个角的含义,然后分析题意,分析已知与所求,再根据题意画出正确的示意图,这是最关键最主要的一步.
(2)将实际问题转化为可用数学方法解决的问题后,要正确使用正、余弦定理解决问题.
正弦、余弦定理在实际测量中的应用的一般步骤 (1)分析:理解题意,分清已知与未知,画出示意图.
(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型.
(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解. (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.
1.如图所示,已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站C的北偏东40°,灯塔B在观察站C的南偏东60°,则灯塔A在灯塔B的( )
5