〖例2〗:为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12. (1) (2)
0.036 0.032 0.028 0.024 0.020 0.016 0.012 0.008 0.004 o 频率/组距 90 100 110 120 130 140 150 次数
第二小组的频率是多少?样本容量是多少?
若次数在110以上(含110次)为达标,试估计该学校全体
高一学生的达标率是多少? (3)
在这次测试中,学生跳绳次数的中位数落在哪个小组内?请
说明理由。
分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1。
解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,
因此第二小组的频率为:错误!未找到引用源。
又因为频率=错误!未找到引用源。 所以 错误!未找到引用源。
(2)由图可估计该学校高一学生的达标率约为
错误!未找到引用源。
(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所
以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内。 【课堂精练】
P71 练习 1. 2. 3
【课堂小结】
1.总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布。 2.总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图。 【课后作业】
1.作业本配套练习
1.P81 习题2.2 A组 1、 2
2.2.2用样本的数字特征估计总体的数字特征(2课时) 一、三维目标: 1、知识与技能
(1)正确理解样本数据标准差的意义和作用,学会计算数据的标准差。
(2)能根据实际问题的需要合理地选取样本,从样本数据中
提取基本的数字特征(如平均数、标准差),并做出合理的解释。
(3)会用样本的基本数字特征估计总体的基本数字特征。 (4)形成对数据处理过程进行初步评价的意识。 2、过程与方法
在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法。 3、情感态度与价值观
会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辨证地理解数学知识与现实世界的联系。 二、重点与难点
重点:用样本平均数和标准差估计总体的平均数与标准差。 难点:能应用相关知识解决简单的实际问题。
三、教学设想 【创设情境】
在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕
甲运动员﹕7,8,6,8,6,5,8,10,7,4; 乙运动员﹕9,5,7,8,7,6,8,6,7,7.
观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究。——用样本的数字特征估计总体的数字特征(板出课题)。
【探究新知】
<一>、众数、中位数、平均数 〖探究〗:P62
(1)怎样将各个样本数据汇总为一个数值,并使它成为样本数据的“中心点”?
(2)能否用一个数值来描写样本数据的离散程度?(让学生回忆初中所学的一些统计知识,思考后展开讨论)
初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供关于样本数据的特征信息。例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t(最高的矩形的中点)(图略见课本第62页)它告诉我们,该市的月均用水量为2. 25t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少。
〖提问〗:请大家翻回到课本第56页看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)
分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以